储能科学与技术, 2021, 10(3): 931-937 doi: 10.19799/j.cnki.2095-4239.2021.0045

固态离子学与储能专刊

三维NZSPO/PAN-PEO-NaTFST]复合钠离子电池固体电解质

刘当玲,1, 王诗敏1, 高智慧1, 徐露富1, 夏书标,2, 郭洪,1

1.云南大学材料与能源学院,云南 昆明 650091

2.曲靖师范学院化学与环境科学学院,云南 曲靖 655011

Properties of three-dimensional NZSPO/PAN-PEO-NATFST sodium-battery-composite solid electrolyte

LIU Dangling,1, WANG Shimin1, GAO Zhihui1, XU Lufu1, XIA Shubiao,2, GUO Hong,1

1.School of Materials and Energy, Yunnan University, Kunming 650091, Yunnan, China

2.College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, Yunnan, China

通讯作者: 郭洪,教授,从事电化学研究,E-mail:guohong@ynu.edu.cn夏书标,教授,从事二次电池关键材料研究,E-mail:xiashubiao@163.com

收稿日期: 2021-02-01   修回日期: 2021-03-11   网络出版日期: 2021-04-30

基金资助: 国家自然科学基金.  52064049.  21467030.  51764048
云南省应用基础重点项目.  2018FA028 2019FY003023
云南省先进储能材料国际联合研究中心.  202003AE140001
2019年度云南省绿能能源固态离子重点实验室建设项目

Received: 2021-02-01   Revised: 2021-03-11   Online: 2021-04-30

作者简介 About authors

刘当玲(1998—),女,硕士研究生,从事钠离子电池固体电解质研究,E-mail:1349460754@qq.com E-mail:1349460754@qq.com

摘要

本工作采用静电纺丝技术,将快离子导体型无机微纳颗粒Na3Zr2Si2PO12(NZSPO)注入聚丙烯腈(PAN)纳米纤维内,合成了3D纤维网状增强型双连续复合固体电解质材料NZSPO/PAN-[PEO-NaTFST]。结果表明,当NZSPO∶PAN质量比为2∶1时,复合固体电解质室温离子电导率达3.38×10-5 S/cm,电化学稳定窗口达到4.4 V。以Na3V2(PO4)3为正极,金属Na为负极,组装成全固态钠离子电池,表现出优异的循环稳定性。首次充放电可逆容量达到109.7 mA·h/g,在0.1 C下200次循环后容量保持为84.5 mA·h/g,容量保持77%,库仑效率接近100%。差示扫描量热分析(DSC)曲线证实了NZSPO-PAN复合纤维可在低温下抑制PEO聚合物的结晶,并加速离子传输动力学的过程。

关键词: 复合固体电解质 ; 电化学性能 ; 钠离子电池 ; NZSPO/PAN-[PEO-NaTFST]

Abstract

The fast ionic conductive inorganic particles of Na3Zr2Si2PO12 (NZSPO) were introduced into polypropylene fine (PAN) nanofibers and used to form the three-dimensional fiber network-reinforced bicontinuous solid electrolyte composites of NZSPO/PAN-[PEO-NaTFST] via the electrospinning method. When the mass ration of NZSPO∶PAN was regulated at 2∶1, a maximum ionic conductivity at room temperature arrived at 3.38×10-5 s/cm, and its electrochemical stability window can be expanded to 4.4 V. Na3V2(PO4)3 and metal Na were adopted as the cathode and anode to assemble an all solid-state sodium-on battery. The reversible capacity of the first cycle was 109.7 mA·h·g-1, which can be maintained at 84.5 mA·h·g-1 after 200 cycles with a high coulomb efficiency near 100% at 0.1 C. Differential scanning calorimetry curves confirmed that the NZSPO-PAN composite fiber can inhibit the crystallization of PEO polymer and accelerate the process of ion transport kinetics at low temperatures.

Keywords: composite solid electrolyte ; electrochemical performance ; sodium ion battery ; NZSPO/PAN-[PEO-NaTFST]

PDF (3376KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

刘当玲, 王诗敏, 高智慧, 徐露富, 夏书标, 郭洪. 三维NZSPO/PAN-PEO-NaTFST]复合钠离子电池固体电解质[J]. 储能科学与技术, 2021, 10(3): 931-937

LIU Dangling. Properties of three-dimensional NZSPO/PAN-PEO-NATFST sodium-battery-composite solid electrolyte[J]. Energy Storage Science and Technology, 2021, 10(3): 931-937

钠和锂化学性质相似、成本低,钠离子电池也越来越受研究者关注。目前,商业化钠离子电池大多使用有机电解液,存在易泄漏、易燃等潜在安全问题,使用固态电解质替代有机电解液可提高钠离子电池安全性[1-2]。其中,聚氧化乙烯(PEO)因出色的热稳定性和力学性能,被研究者广泛关注[3-4],但室温下较低的离子电导率会影响电池性能[5-6]。因此开发室温高离子电导率、良好力学性能的PEO基固态电解质,对全固态钠离子电池的发展具有重要的理论指导意义[7-11]

通过有机共聚/共混/交联等方式可有效提高PEO离子电导率。Moreno等[12]通过在PEO基中添加钠盐,将双三氟甲基磺酰亚胺钠(NaTFSI)作为无机溶质溶入PEO基中时,离子电导率显著提高。无机钠盐的引入,可有效降低聚合物的熔融温度(Tm)及玻璃化转变温度(Tg)[13],同时增加聚合物室温时无定形区域。与单独的无机固体电解质(ISE)或有机固体电解质(OSE)相比,有机-无机复合体系提高OSE离子电导率的同时保留了其与电极接触时良好的界面兼容性。因此,合适无机钠盐的引入有利于制备综合性能良好的PEO基电解质。Na3Zr2Si2PO12(NZSPO)是一类高室温离子电导率的快离子导体型(NASCION)ISE[14],将NZSPO与PEO结合,构筑刚柔并济的柔性有机-无机复合固态电解质可有效提高PEO基电解质的离子电导率并改善界面效应[15-17]

鉴于此,本试验以PEO为基体,将无机导电型颗粒NZSPO与PEO制备溶液,以静电纺丝的方法构筑三维钠微结构-有机/无机复合的NZSPO/PAN-[PEO-NaTFST]复合固体电解质。无机颗粒的引入抑制了PEO室温下结晶,提高了PEO基体的离子电导率,同时增加PEO的电化学窗口。通过交流阻抗、循环伏安(CV)等方法,探索NZSPO与PEO的最优质量比;组装钠离子电池,研究NZSPO对PEO基电解质电化学性能的影响。

1 实 验

1.1 三维纤维网络NZSPO/PAN的制备

通过溶胶-凝胶结合高温固相反应,合成尺寸均一的纳米快离子导体型无机颗粒Na3Zr2Si2PO12。称取1 g PAN溶于N,N-二甲基甲酰胺(DMF)中配制质量分数为10%的溶液。完全溶解后,加入(NZSPO∶PAN质量比为1∶1、2∶1、3∶1)无机导电颗粒,于60 ℃剧烈搅拌10 h以获得静电纺丝前驱液。通过控制静电纺丝工艺参数(高压电15 kV,喷头流速1 mL/h,喷头与接收器距离15 cm,接收器转速600 r/min)纺出纤维尺寸均一的NZSPO/PAN复合纳米纤维膜。随后,将所制备的复合纤维膜于真空干燥箱内80 ℃真空干燥24 h。

1.2 复合固体电解质NZSPO/PAN-[PEO-NaTFST]的制备

使用溶液浇注法制备复合固体电解质。在使用前,将双三氟甲基磺酰亚胺钠(NaTFSI)和PEO在80 ℃下真空干燥24 h,并置于手套箱内称量。将PEO溶于无水乙腈中配制质量分数为12%的溶液,加入NaTFSI(摩尔比[PEO]∶[NaTFSI]=15∶1),室温下,手套箱内密封搅拌24 h。随后,将其浇注到NZSPO/PAN复合纳米纤维膜上,使其自然流平,置于手套箱内自然干燥24 h后真空干燥箱60 ℃干燥24 h以获得3D纤维网状增强型双连续复合固体电解质材料NZSPO/PAN-[PEO-NaTFST]。

1.3 复合固体电解质NZSPO/PAN-[PEO-NaTFST]的表征测试

利用扫描电子显微镜(SEM),型号S-3400N、厂家日本日立(HITACHI)公司;X射线衍射(XRD),型号D/max-2300、厂家日本Rigaku公司;热重分析(TGA)、差示扫描量热分析(DSC),型号梅特勒TGA/DSC/1600LF至尊型、厂家瑞士METTLER TOLEDO公司;等多种测试方法进行物相及微观结构表征。以Na3V2(PO4)3作为正极活性材料,活性物质质量(2.0±0.3) mg,复合固体电解质NZSPO/PAN-[PEO-NaTFST]为隔膜、钠片为参比电极组装全固态钠离子电池(2025式纽扣电池)。在薄膜拉伸强度试验仪(DLS-07 PC)上测试材料室温下抗拉强度,新威电池检测设备和LAND电池检测设备上进行恒流充放电测试,测试电压范围为0.001~4 V。两边以不锈钢作为对称电极,通过电化学工作站,在频率1000 kHz~1 Hz测试其交流阻抗。

2 结果与讨论

2.1 复合固体电解质的物相及形貌表征

通过溶胶-凝胶法结合高温固相反应,合成尺寸均一的纳米快离子导体型无机颗粒NZSPO,将NZSPO与PEO制备复合纤维膜,结果如下:图1(a)为Na3Zr2Si2PO12的XRD图谱,与标准PDF卡片(JPCDS#33-1313)对比可知,所制备的Na3Zr2Si2PO12具有C2/c空间群的纯相菱面体NASICON结构[15]图1(b)为Na3Zr2Si2PO12的SEM图,SEM图中可清楚看到无机颗粒分布均匀,平均粒径约为20 nm。图2为不同质量比NZSPO-PAN复合纤维SEM图,由复合纤维的SEM图像可知,所制备的纤维表面光滑,纤维直径约为300 nm,随着Na3Zr2Si2PO12与PAN质量比的增加,纤维直径减小。图2(e)、(f)表明当Na3Zr2Si2PO12与PAN的质量比为2∶1时,Na3Zr2Si2PO12颗粒可均匀分散在PAN纤维内;图2(g)、(h)为当Na3Zr2Si2PO12∶PAN比例为3∶1时,可观察到明显的无机颗粒团聚现象。图3(a)、(b)分别为NZSPO/PAN复合纤维膜和溶液浇注后2NZSPO/PAN-[PEO15-NaTFSI]复合固体电解质膜的光学图片。与纯NZSPO/PAN复合纤维膜相比,PEO填充后的纤维膜较为透明,可看出PEO均匀地渗透进纤维之间;且样品在弯曲、扭曲时没有任何褶皱和裂缝,显示出优异的柔韧性。

图1

图1   (a) Na3Zr2Si2PO12XRD图谱;(b) Na3Zr2Si2PO12SEM

Fig. 1   (a) XRD pattern of Na3Zr2Si2PO12; (b) SEM image of Na3Zr2Si2PO12


图2

图2   (a, b) 纯纺PANSEM图;(c, d) Na3Zr2Si2PO12PAN质量比为11SEM图;(e, f) Na3Zr2Si2PO12PAN质量比为21SEM图;(g, h) Na3Zr2Si2PO12PAN质量比为31SEM

Fig. 2   (a, b) SEM image of pure spinning PAN; (c, d) SEM image of Na3Zr2Si2PO12PAN(11); (e, f) SEM image of Na3Zr2Si2PO12PAN(2:1); (g, h) SEM image of Na3Zr2Si2PO12PAN(31)


图3

图3   (a) NZSPO/PAN复合纤维膜的光学图片;(b) 2NZSPO/PAN-[PEO15-NaTFSI]复合固体电解质膜的光学图片

Fig. 3   (a) optical picture of NZSPO / PAN composite fiber membrane; (b) optical picture of 2NZSPO/PAN-[PEO15-NaTFSI] composite solid electrolyte membrane


图4(a)为复合固体电解质膜的TG曲线。可看出,复合固体电解质在150 ℃以下没有质量损失,即该温度范围内复合固体电解质膜稳定[18]。PEO15-NaTFSI和2NZSPO/PAN-[PEO15-NaTFSI]的DSC曲线如图4(b)所示,黑色曲线在62.8 ℃出现明显的吸热峰,该峰为PEO15-NaTFSI电解质的熔融温度(Tm),红色曲线为2NZSPO/PAN-[PEO15-NaTFSI],吸热峰向低温(58.2 ℃)移动且强度大为减弱,说明加入NZSPO后,复合固体电解质Tm降低,同时降低PEO聚合物的玻璃化转变温度(Tg)。以上结果均表明PEO聚合物非晶相比例增加,即NZSPO-PAN复合纤维可在低温下抑制PEO聚合物的结晶同时加速离子传输动力学过程[13]图4(c)为室温下纯PEO和2NZSPO/PAN-[PEO15-NaTFSI]的拉伸曲线。可看出,灌入NZSPO后,复合纤维膜的抗拉强度得到提升。TGA曲线和拉伸曲线均证实了复合纤维膜的物理性质得到改善。

图4

图4   (a) 2NZSPO/PAN-[PEO15-NaTFSI]复合固体电解质膜的TG曲线;(b) PEO15-NaTFSI2NZSPO/PAN-[PEO15-NaTFSI]DSC曲线;(c) 2NZSPO/PAN-[PEO15-NaTFSI]复合固体电解质膜和纯PEO拉伸曲线

Fig. 4   (a) TG curves of 2NZSPO/PAN-[PEO15-NaTFSI] composite solid electrolyte membrane; (b) DSC curves of PEO15-NaTFSI and 2NZSPO/PAN-[PEO15-NaTFSI]; (c) tensile curves of 2NZSPO/PAN-[PEO15-NaTFSI] composite solid electrolyte membrane and pure PEO


2.2 复合固体电解质电化学性能

复合固体电解质的离子电导率依赖聚合物非晶链段的运动,对室温下复合固体电解质的电化学性能进行表征。图5(a)、(b)所示分别为室温下PEO15-NaTFSI、xNZSPO/PAN-[PEO15-NaTFSI](x=1,2,3)复合固体电解质的交流阻抗谱图。室温下,该阻抗谱线高频区呈现出一个不规则的半圆,圆弧与实轴的右交点即为复合固体电解质的体电阻(Rb)[19]。低频区直线可解释为典型阻塞型电极的电容行为,主要是电解质于电极表面抵抗离子导电时产生的阻碍[20]。复合固体电解质的离子电导率(σ)通过σ=d/RbA计算,式中dARb分别为试样厚度、面积和试样的体电阻[21]。当NZSPO∶PAN质量比为2∶1(2NZSPO/PAN-[PEO15-NaTFSI])时,复合固体电解质室温离子电导率达到3.38×10-5 S/cm,明显高于PEO-NaTFSI。图5(c)和表1结果表明,通过引入不同质量比的NZSPO,复合固体电解质离子电导率、离子迁移数得到提升。这是由于无机导电颗粒的引入可以促进相邻聚合物链之间的相互作用并减少节段重新取向,提高聚合物链段的运动[22-23]。DSC曲线证实了由于无机颗粒的引入,聚合物非晶相比例增加,玻璃化转变温度降低。复合固体电解质的离子电导率提高可归因于纳米填料NZSPO中Na+的贡献。NZSPO中的Na+可被没有钠盐的PAN基质吸收,增加NZSPO表面钠空位,从而显著提高复合固体电解质的离子电导率[21]。当NZSPO∶PAN质量比为3∶1时,复合固体电解质的离子电导率降低,SEM可观测到无机纳米颗粒的团聚,说明随着无机颗粒比例的增加,聚合物节段重新定向,晶界阻抗增加[24]

图5

图5   (a) PEO15-NaTFSI(b) xNZSPO/PAN-[PEO15-NaTFSI](x=1,2,3)复合固体电解质的交流阻抗谱图;(c) 不同比例复合固体电解质的Arrhenius

Fig. 5   (a) AC impedance spectrum of PEO15-NaTFSI, (b) xNZSPO/PAN-[PEO15-NaTFSI] (x=1,2,3) composite solid electrolyte; (c) Arrhenius plot of composite solid electrolyte with different proportions


表1   复合固体电解质离子迁移数

Table 1  Ion migration number of composite solid electrolyte

材料PEOPEO15-NaTFSINZSPO/PAN-[PEO15-NaTFSI]2NZSPO/PAN-[PEO15-NaTFSI]3NZSPO/PAN-[PEO15-NaTFSI]
t+(离子迁移数)0.1620.2010.2410.2930.237

新窗口打开| 下载CSV


图6(a)为2NZSPO/PAN-[PEO15-NaTFSI]复合固体电解质的LSV曲线。在4.4 V前,没有观察到峰值或明显的氧化电流,这表明复合电解质在此电位下是稳定的。使用2NZSPO/PAN-[PEO15-NaTFSI]复合固体电解质代替传统钠离子电池的液体电解质和隔膜,组装NVP/2NZSPO/PAN-[PEO15-NaTFSI]/Na全固态钠离子电池,测试复合固体电解质材料的电化学性能,在2.5~3.8 V的电压范围内测试其循环稳定性。图6(b)显示了在0.1 C下NVP/SPE/Na和NVP/CPE/Na电池的首次充放电曲线。NVP/CPE/Na电池的可逆容量为109.7 mA·h/g,初始库仑效率为94%,而使用PEO15-NaTFSI作为固体电解质的电池可逆容量为97.2 mA·h/g,初始库仑效率为89.4%。NVP/CPE/Na电池极化程度(0.06 V)小于NVP/SPE/Na(0.13 V)电池。

图6

图6   (a) 60 ℃下,通过线性扫描伏安法以0.1 mV/s的扫描速率测定2NZSPO/PAN-[PEO15-NaTFSI]复合固体电解质的电化学稳定窗口;(b) NVP/SPE/NaNVP/CPE/Na电池在0.1 C80 ℃下的首次充电/放电曲线

Fig. 6   (a) electrochemical stability window of 2NZSPO/PAN-[PEO15-NaTFSI] composite solid electrolyte was measured by linear scanning voltammetry at a scan rate of 0.1 mV/s at 60 ; (b) first charge/discharge curves of NVP/SPE/Na and NVP/CPE/Na batteries at 0.1 C and 80


图7(a)、(c)分别显示了NVP/CPE/Na电池在室温、0.1 C恒电流密度下的循环性能及0.1~0.5 C的倍率性能;图7(a)0.1 C下NVP/CPE/Na循环曲线显示,首次充放电容量达109.7 mA·h/g,在0.1 C下200次循环后容量为84.5 mA·h/g,容量保持77%,库仑效率接近100%,表现出优异的循环稳定性。图7(c)倍率性能图显示电池在0.5 C的高电流密度下也具有出色的倍率性能,当电流密度回到0.2 C时,可逆容量几乎可以恢复,库仑效率随循环次数稳定增加,并保持在99%。图7(b)、(d)分别显示了NVP/SPE/Na电池在室温条件下,在0.1 C恒电流密度下的循环性能及其在0.1~0.5 C的倍率性能。图8(b)所示NVP/SPE/Na在115个循环内容量发生明显衰减,0.5 C的高电流密度时无法获得容量,当电流密度回到0.2 C时,容量发生衰减。NVP/CPE/Na全固态电池出色的电化学性能可归因于复合固体电解质的高离子电导率以及复合固体电解质与电极材料的柔性接触界面[25-26]

图7

图7   (a) NVP/CPE/Na电池在0.1 C恒电流密度下的循环性能;(b) NVP/SPE/Na电池在0.1 C恒电流密度下的循环性能;(c) NVP/CPE/Na电池在0.10.20.5 C下的倍率性能;(d) NVP/SPE/Na电池在0.10.20.5 C下的倍率性能

Fig. 7   (a) the rate performance of NVP/CPE/Na batteries at 0.1 C; (b) rate performance of NVP/SPE/Na batteries at 0.1 C; (c) cyclic performance of NVP/CPE/Na a batteries at a constant current density of 0.1 C; (d) cyclic performance of NVP/SPE/Na batteries at a constant current density of 0.1 C


3 结论

通过溶胶-凝胶法、静电纺丝法及溶液浇注法制备了三维纤维网络增强的PEO基复合固体电解质。复合纤维网络的引入减少了PEO聚合物的节段重组,复合固体电解质中无定形区域增加,离子电导率得到改善。PEO对三维网络的填充在保持优异的界面兼容性的同时提高了离子电导率。与纯的PEO-NaTFSI固体电解质相比,复合固体电解质的化学稳定窗口得到改善,组装全固态钠离子电池时表现出优异的循环稳定性和倍率性能。

参考文献

LIU M K, AO H S, JIN Y, et al. Aqueous rechargeable sodium ion batteries: Developments and prospects[J]. Materials Today Energy, 2020, 17: doi: 10.1016/j.mtener.2020.100432.

[本文引用: 1]

孙歌, 魏芷宣, 张馨元, 等. 钠离子无机固体电解质研究进展[J]. 储能科学与技术, 2020, 9(5): 1251-1265.

[本文引用: 1]

SUN G, WEI Z X, ZHANG X Y, et al. Recent progress of sodium-based inorganic solid electrolytes[J]. Energy Storage Science and Technology, 2020, 9(5): 1251-1265.

[本文引用: 1]

HAN L F, WANG J L, MU X W, et al. Controllable magnetic field aligned sepiolite nanowires for high ionic conductivity and high safety PEO solid polymer electrolytes[J]. Journal of Colloid and Interface Science, 2021, 585: 596-604.

[本文引用: 1]

XU D, WANG B R, WANG Q, et al. High-strength internal cross-linking bacterial cellulose-network-based gel polymer electrolyte for dendrite-suppressing and high-rate lithium batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(21): 17809-17819.

[本文引用: 1]

WANG E H, CHEN M Z, LIU X H, et al. Organic cross-linker enabling a 3D porous skeleton-supported Na3V2(PO4)3/carbon composite for high power sodium-ion battery cathode[J]. Small Methods, 2018, 3(4): 169-180.

[本文引用: 1]

WU F, ZHANG K, LIU Y R, et al. Polymer electrolytes and interfaces toward solid-state batteries: Recent advances and prospects[J]. Energy Storage Materials, 2020, 33: 26-54.

[本文引用: 1]

ADELI P, BAZAK J D, PARK K H, et al. Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution[J]. Angewandte Chemie, 2019, 58(26): 8681-8686.

[本文引用: 1]

CHEN Y, WEN K H, CHEN T H, et al. Recent progress in all-solid-state lithium batteries: The emerging strategies for advanced electrolytes and their interfaces[J]. Energy Storage Materials, 2020, 31: 401-433.

ZHOU C T, BAG S, THANGADURAI V. Engineering materials for progressive all-solid-state Na batteries[J]. ACS Energy Letters, 2018, 3(9): 2181-2198.

AO H S, ZHAO Y Y, ZHOU J, et al. Rechargeable aqueous hybrid ion batteries: Developments and prospects[J]. Journal of Materials Chemistry A, 2019, 7(32): 18708-18734.

PALOMARES V, CASAS-CABANAS M, CASTILLO-MARTÍNEZ E, et al. Update on Na-based battery materials. A growing research path[J]. Energy & Environmental Science, 2013, 6(8): 2312-2337.

[本文引用: 1]

MORENO J S, ARMAND M, BERMAN M B, et al. Composite PEOn: NaTFSI polymer electrolyte: Preparation, thermal and electrochemical characterization[J]. Journal of Power Sources, 2014, 248: 695-702.

[本文引用: 1]

PUTRI R M, FLOWERI O, MAYANGSARI T R, et al. Preliminary study of electrochemical properties of polyethylene oxide (PEO) and polyvinyl alcohol (PVA) composites as material for solid polymer electrolyte[J]. Materials Today: Proceedings, 2021, doi: 10.1016/j.matpr.2020.11.663.

[本文引用: 2]

杨菁, 刘高瞻, 沈麟, 等. NASICON结构钠离子固体电解质及固态钠电池应用研究进展[J]. 储能科学与技术, 2020, 9(5): 1284-1299.

[本文引用: 1]

YANG J, LIU G Z, SHEN L, et al. Research progress on NASICON-structured sodium solid electrolytes and their derived solid state sodium batteries[J]. Energy Stroge Science and Technology, 2020, 9(5): 1284-1299.

[本文引用: 1]

GAO Z H, YANG J Y, YUAN H Y, et al. Stabilizing Na3Zr2Si2PO12/Na interfacial performance by introducing a clean and Na-deficient surface[J]. Chemistry of Materials, 2020, 32(9): 3970-3979.

[本文引用: 2]

HIRAOKA K, KATO M, KOBAYASHI T, et al. Polyether/Na3Zr2Si2PO12 composite solid electrolytes for all-solid-state sodium batteries[J]. The Journal of Physical Chemistry C, 2020, 124(40): 21948-21956.

HOU W R, GUO X W, SHEN X Y, et al. Solid electrolytes and interfaces in all-solid-state sodium batteries: Progress and perspective[J]. Nano Energy, 2018, 52: 279-291.

[本文引用: 1]

YI Q, ZHANG W Q, LI S Q, et al. Durable sodium battery with a flexible Na3Zr2Si2PO12-PVDF-HFP composite electrolyte and sodium/carbon cloth anode[J]. ACS Applied Materials & Interfaces, 2018, 10(41): 35039-35046.

[本文引用: 1]

YU X W, XUE L G, GOODENOUGH J B, et al. A high-performance all-solid-state sodium battery with a poly(ethylene oxide)-Na3Zr2Si2PO12 composite electrolyte[J]. ACS Materials Letters, 2019, 1(1): 132-138.

[本文引用: 1]

DAS S, GHOSH A. Charge carrier relaxation in different plasticized PEO/PVDF-HFP blend solid polymer electrolytes[J]. The Journal of Physical Chemistry B, 2017, 121(21): 5422-5432.

[本文引用: 1]

GAO Y R, NOLAN A M, DU P, et al. Classical and emerging characterization techniques for investigation of ion transport mechanisms in crystalline fast ionic conductors[J]. Chemical Reviews, 2020, 120(13): 5954-6008.

[本文引用: 2]

YU W H, ZHAI Y F, YANG G M, et al. A composite electrolyte with Na3Zr2Si2PO12 microtube for solid-state sodium-metal batteries [J]. Ceramics International, 2020, 47(8): 11156-11168.

[本文引用: 1]

KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy, 2016, 1(4): doi: 10.1038/nenergy.2016.30

[本文引用: 1]

AKHTAR M S, KWON S J, STADLER F J, et al. High efficiency solid state dye sensitized solar cells with graphene-polyethylene oxide composite electrolytes[J]. Nanoscale, 2013, 5(12): 5403-5411.

[本文引用: 1]

ZHUANG H, MA W C, XIE J W, et al. Solvent-free synthesis of PEO/garnet composite electrolyte for high-safety all-solid-state lithium batteries[J]. Journal of Alloys and Compounds, 2020, doi: 10.1016/j.jallcom.2020.157915.

[本文引用: 1]

LIM Y J, HAN J, KIM H W, et al. An epoxy-reinforced ceramic sheet as a durable solid electrolyte for solid state Na-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(29): 14528-14537.

[本文引用: 1]

/