储能科学与技术, 2020, 9(5): 1472-1488 doi: 10.19799/j.cnki.2095-4239.2020.0135

储能材料与器件

NASICON结构Li1+xAlxTi2-x(PO4)30x0.5)固体电解质研究进展

吴洁,, 江小标, 杨旸, 吴勇民, 朱蕾, 汤卫平,

上海空间电源研究所,空间电源技术国家重点实验室,上海 200245

Progress of NASICON-structured Li1+xAlxTi2-x(PO4)3 (0 x 0.5) solid electrolyte

WU Jie,, JIANG Xiaobiao, YANG Yang, WU Yongmin, ZHU Lei, TANG Weiping,

State Key Laboratory of Space Power Technology, Shanghai Institute of Space Power-Sources, Shanghai 200245, China

通讯作者: 汤卫平,博士,研究员,主要研究方向为锂离子筛吸附剂及储能电池,E-mail:tangwp@sina.cn

收稿日期: 2020-04-07   修回日期: 2020-05-01   网络出版日期: 2020-09-08

基金资助: 国家重点研发项目.  2018YFB0905400
上海市启明星计划项目.  18QB1402600

Received: 2020-04-07   Revised: 2020-05-01   Online: 2020-09-08

作者简介 About authors

吴洁(1994—),男,硕士研究生,主要研究方向为全固态电池固体电解质,E-mail:WuJieMYB@163.com; E-mail:WuJieMYB@163.com

摘要

锂离子电池在生活中的广泛应用大大提高了人们的生活品质。但是由于采用了易燃的有机液体电解质,传统锂离子电池存在安全风险,能量密度也受到了限制。使用固体电解质替代有机液体电解质发展全固态电池有望解决这些问题。在各种固体电解质中,NASICON结构固体电解质Li1+xAlxTi2-x(PO4)3(LATP,0 ≤ x ≤ 0.5)具有离子电导率高、耐环境稳定性好,合成条件温和等优势,因此有广阔的发展前景和应用潜力。本文先从晶体结构、离子扩散机理、合成方法、提升离子电导率的途径4个方面综述了LATP材料的研究进展;另外,电化学稳定性差以及和电极活性材料界面阻抗大的问题限制了LATP固体电解质在全固态锂电池中的应用,所以在后半部分总结了这些关键问题的解决途径和方法。最后指出,界面问题是限制LATP固体电解质在全固态电池中应用的主要问题,还需要发展更好的策略来进一步优化LATP与电极活性材料之间的界面。

关键词: LATP固体电解质 ; 离子扩散机理 ; 离子电导率 ; 合成方法 ; 电极/固体电解质界面

Abstract

The widespread application of lithium-ion batteries greatly improves peoples’ quality of life. However, due to the use of flammable organic liquid electrolytes, there is a safety risk with traditional lithium-ion batteries and their energy density is limited. The development of all-solid-state batteries using solid electrolytes is expected to solve these problems. With high ionic conductivity, good environmental stability, and mild synthesis conditions, the NASICON-structured solid electrolyte Li1+xAlxTi2-x(PO4)3 (LATP, 0≤x≤0.5) is a fairly promising solid electrolyte. This paper first reviews the progress of LATP according to four aspects: Its crystal structure, ionic diffusion mechanism, synthetic methods, and methods to improve its ionic conductivity. In addition, with the electrochemical instability and high interface impedance of the LATP solid electrolyte against electrode active materials limiting its application in all-solid-state lithium batteries, the solutions to these key issues are summarized in the second part of the paper. Finally, it is emphasized that interface problems are the main challenge limiting the application of LATP solid electrolytes in all-solid-state batteries, necessitating the development of better strategies to further optimize the interface between LATP and electrode active materials.

Keywords: LATP solid electrolyte ; ionic diffusion mechanism ; ionic conductivity ; synthetic methods ; electrode/solid electrolyte interface

PDF (6650KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

吴洁, 江小标, 杨旸, 吴勇民, 朱蕾, 汤卫平. NASICON结构Li1+xAlxTi2-x(PO4)30x0.5)固体电解质研究进展. 储能科学与技术[J], 2020, 9(5): 1472-1488 doi:10.19799/j.cnki.2095-4239.2020.0135

WU Jie. Progress of NASICON-structured Li1+xAlxTi2-x(PO4)3 (0 x 0.5) solid electrolyte. Energy Storage Science and Technology[J], 2020, 9(5): 1472-1488 doi:10.19799/j.cnki.2095-4239.2020.0135

锂离子电池作为一种先进的储能器件已被广泛用于各种电子设备和电动汽车。锂离子电池通常由石墨负极和锂化过渡金属正极组成,理论能量密度约为350~400 W·h/kg,但实际的能量密度仅为100~220 W·h/kg,难以满足先进储能和动力应用对能量密度不断增长的需求[1]。锂金属负极和高电压正极材料的应用可以大幅提高电池的能量密度,但是传统锂离子电池采用的是有机液体电解质,在充电过程中,由于锂离子的不均匀沉积,很容易形成锂枝晶,导致电池短路,而且高电压正极会导致有机液体电解质氧化分解,存在安全隐患[2-3]。因此,为了提高锂离子电池的能量密度以及解决传统锂离子电池易燃甚至爆炸的安全问题,使用固体电解质取代液体电解质发展全固态电池的研究成为热点。全固态电池和传统锂离子电池的工作原理相同[4-5],都是电子通过外电路在正负极之间流动,锂离子则通过电解质从正负极脱出或嵌入,区别在于固体电解质综合了液体电解质和隔膜两者的功能[6],既是离子传导的媒介,又兼顾了隔膜的功能,阻止了电子的传导,防止电池短路。与使用液体电解质及其隔膜的组合相比,固体电解质具有以下优点:①杨氏模量大,力学性能好;②抗化学氧化-还原能力强;③离子输率大,离子在正负极之间传输效率高;④不易燃,甚至没有可燃性[4]。固体电解质的这些性能赋予了固态电池不易生长锂枝晶,可使用高电压正极以及金属锂负极等特性[7],从而提高了固态电池安全性、比能量密度、充放电效率和循环稳定性。应用于全固态电池中的固体电解质需满足以下要求:①为了发挥全固态电池的性能,固体电解质的室温离子电导率需高于10-4 S/cm,并且电子绝缘[8-9];②对正、负极活性材料的界面兼容性以及(电)化学稳定性好。目前,不少固体电解质的离子电导率都能达到甚至超过10-4 S/cm[10-13],但是与电极活性材料存在着界面阻抗大和稳定性差的问题,需要通过界面修饰策略来解决[14-22]

根据组成,固态电解质可以分为无机固体电解质、聚合物电解质和复合固体电解质。聚环氧乙烷(PEO)是一种发展得最早的聚合物电解质,与锂盐混合后能形成锂离子导体,随后又出现了聚甲基丙烯酸甲酯(PMMA)、聚偏氟乙烯(PVDF)和聚丙烯腈(PAN)基聚合物电解质,但是通常聚合物电解质的室温离子电导率(<10-5 S/cm)、阳离子迁移数(t+0.2~0.5)较低,而且部分聚合物电解质抗氧化性差[23]。在各种无机固体电解质中,硫化物、石榴石型和NASICON结构固体电解质这些超离子导体的离子电导率高,能达到10-4 S/cm以上[10-12]。硫化物电解质(如Li10GeP2S12)的离子电导率甚至能达到10-2 S/cm[24-25],可以和液体电解质的电导率相媲美,但是硫化物在空气中不稳定,吸水后会产生有毒气体H2S[26]。石榴石型电解质Li7La3Zr2O12虽然对金属锂稳定[27],但同样对空气不稳定[28-30],与潮湿的空气接触会在材料表面生成Li2CO3,影响其离子电导率以及与电极的界面阻抗。NASICON型电解质Li1+xAlxTi2-x(PO4)3(LATP,0 ≤ x≤ 0.5)的体相离子电导率和总的离子电导率可分别达到10-3 S/cm、7×10-4 S/cm[31-33],可以满足全固态电池实用化对离子电导率的要求,而且对空气和水稳定[34-35],可以在空气氛围中进行材料的规模化制备和电池组装,这降低了加工难度和生产成本。另外,Xiao等[36]比较了各种无机固体电解质,从原料价格考虑,LATP固体电解质在材料合成和商业化上有着明显优势。但是,LATP具有电化学稳定性差的缺点。总的来说,无机固体电解质具有高离子电导率、机械强度高、但可加工性差,与电极材料的界面阻抗大,而聚合物电解质易于制备、柔韧性高、界面润湿性好,为了综合两者的优势,发展了复合固体电解质,其室温离子电导率一般比相应的无机固体电解质的要低[37-44]。添加Li1.3Al0.3Ti1.7(PO4)3纳米颗粒后,PEO-LiClO4电解质的离子电导率和离子迁移数得到极大改善,Li1.3Al0.3Ti1.7(PO4)3装载量为50%(质量分数)时,PEO-LiClO4复合电解质30 ℃下的离子电导率从1.6×10-6 S/cm增至9.5×10-6 S/cm[38]。在PEO中引入垂直排列、具有连续锂离子传输通道的LATP陶瓷填料,形成的复合固体电解质的室温离子电导率能达到0.52×10-4 S/cm,与其理论离子电导率相似[37]表1列举了几种固体电解质主要的优势和劣势。

表1   几种固体电解质主要的优势和劣势

Table 1  Main advantages and disadvantages of some solid electrolytes

类型聚合物电解质无机固体电解质复合固体电解质
硫化物电解质石榴石型电解质NASICON型电解质
优势

①可加工性好

②与电极界面接触良好

①离子电导率极高

①离子电导率高

②对锂金属稳定

①离子电导率高

②对空气稳定

③成本较低

①可加工性好

②离子电导率较高

③界面润湿性好

劣势

①离子迁移数较低

②(与高压正极接触易被氧化)室温离子电导率一般较低

①对空气、锂金属不稳定

①对空气不稳定

②原料(Zr、La)成本高

③晶界阻抗高

①对锂金属不稳定

②晶界阻抗高

①离子迁移数<1

②界面稳定性不高

代表物PEO基电解质Li10GeP2S12Li7La3Zr2O12Li1.3Al0.3Ti1.7(PO4)3PEO-LATP

新窗口打开| 下载CSV


本文首先综述了LATP材料的特点和性能,包括晶体结构、离子扩散机理、合成方法、提升离子电导率的途径4个方面;然后,总结了LATP/电极材料之间的界面阻抗和稳定性的研究进展,分析了问题起源和调控策略。

1 晶体结构与离子扩散机理

1.1 晶体结构

1975年,自Hong等[45]报道了具有NASICON(Na super ion conductor)结构的材料以来,一些具有NASICON结构的离子导体被相继报道和研究[46-56]。Li1+xAlxTi2-x(PO4)3(LATP,0≤x≤0.5)就是其中广为人知的一种。Li1+xAlxTi2-x(PO4)3的结构可从LiTi2(PO4)3(x=0)理解。LiTi2(PO4)3为菱形结构(R-3c),由TiO6八面体和PO4四面体共顶点连接形成三维骨架,每个TiO6八面体和6个PO4四面体相连,每个PO4四面体则和4个TiO6八面体相连,而Li+完全占据在M1位点,与相邻的两个TiO6八面体的6个氧原子配位[57]。如图1(a)所示,当x>0时,Al3+部分取代Ti4+,Al3+随机分布在原先的TiO6八面体的Ti位置上。同时,为了平衡电荷,与Al3+等摩尔量的Li+会被引入结构中,占据在M2位点,与8个氧原子配位[56],形成化学式为Li1+xAlxTi2-x(PO4)3的固溶体。每个M1位点连接着6个M2位点,而每个M2位点仅与2个M1位点相连[58],因此LATP晶体骨架内具有三维离子迁移通道,这是LATP离子电导率高的原因之一。但是,Monchak等[59]和Redhammer等[60]发现,用于电荷补偿的额外Li+位于M3位点、36f (0.07,0.34,0.07),而不是M2位点、18e (x,0,0.25),M3位点的Li+与四个氧原子形成配位。图1(b)展示了M1、M2和M3位点在NASICON结构中的分布情况。图1(a)左上方是M1位点处“瓶颈”区域的特写,“瓶颈”由与Li+配位的3个氧原子构成,是离子迁移通道中最狭窄的部位,控制着Li+的移动性[58]

图1

图1   (a) NASICON结构:蓝色八面体为[Ti/Al]O6,紫色四面体为PO4,绿球为M1位点,黄球为M2位点,M1M2位点之间的连线为锂离子传输通道[58](b) NASICON结构中M1M2M3位点的分布[61]

Fig.1   (a) representation of a typical NASICON structure: Blue octahedra are MO6 units, purple tetrahedra are PO4 units, green spheres are M1 sites, and yellow spheres are M2 sites. Pathways for Li+ motion are drawn between M1 and M2 sites[58]; (b) representation of distribution of M1, M2 and M3 sites in NASICON structure[61]


由PO4四面体、[Ti/Al]O6八面体构成的结构骨架赋予了LATP优良的锂离子传导性能,其超离子传导现象引发了对LATP离子扩散机理的研究热潮。

1.2 锂离子传导机理

Li+在晶格内基本跃迁过程控制着Li+的传输特性。Monchak等[59]经计算得出,从能垒的角度考虑,Li+在晶格内偏向于沿着M1→M3→M3→M1 Z字形迁移路径进行扩散,其活化能约为0.33 eV(1 eV=1.6021766208×10-19 J),与其他文献报道的LATP体相活化能相符合(0.15~0.30 eV[55, 62-67])。Redhammer等[60]则发现,只有当Li+沿着M3→M1→M3路径跃迁时,离子迁移才会发生。而且,M3位点的一个Li+向前迁移时,由于库仑力,它必然推着M1位点的另一个Li+跃迁至下一个M3位点。因此,在Redhammer等的研究中,Li+实际上是以协同迁移的方式在LATP晶体内部进行扩散的。Monchak和Redhammer研究得出的LATP晶体内部的Li+扩散路径虽然略有差异,但都表明,Li+的迁移都会涉及M1和M3两个晶体学位点。Arbi等[61]的研究也证实了在M1和M3两个位点之间存在着锂离子交换。

Lu等[68]研究了LiTi2(PO4)3中Li+的空位扩散机理和间隙扩散机理的差异,发现空位扩散机理的扩散系数较低,与LiTi2(PO4)3的快离子扩散特点相矛盾,而Li+发生间隙扩散的扩散系数相对较高。因此,Lu等认为,在LiTi2(PO4)3中,间隙扩散是Li+的主要迁移方式。在Al3+部分取代Ti4+后,LATP的Li+处于明显的无序状态[59],这种Li+位点的无序状态会增强Li+的间隙扩散过程。同样,Lang与其合作者[69]基于DFT(denity functional theory)比较了Li1.3Al0.3Ti1.7(PO4)3中Li+的间隙扩散和空位辅助扩散过程,发现间隙扩散在能量上更为可行。

Epp等[70]通过核磁共振研究Li1.5Al0.5Ti1.5(PO4)3离子扩散动力学的结果表明Li+的扩散机理非常复杂。随着温度的升高,Li+的扩散机理会发生变化。如图2(a)所示,A和B是在不同温度下由离子扩散引起的速率峰,归因于Li+的两种不同跃迁过程离子动力学。这两种跃迁过程可能包括Li+在M1和M3位点之间的跃迁,也可能涉及其他间隙位点。A峰对应的离子动力学表现出超快的Li+扩散过程(DA≈5×10-8 cm2/s,T=300 K),正好与LATP 10-3 S/cm数量级的体相离子电导率相匹配,而B峰对应的Li+扩散过程相对较慢(DB≈3×10-9 cm2/s,T≈600 K),计算得到的这两种跃迁过程的活化能非常低(Ea, A=0.17 eV,Ea, B=0.16 eV)。Hallopeau与其合作者[71]对LATP(x=0.3)的锂离子传导机理随温度变化的研究结果与Epp等的基本一致。Hallopeau等借助微波辅助活性烧结技术,在890 ℃烧结10 min制备了纯相的LATP陶瓷电解质。从Arrhenius曲线[图2(b)]上可以观察到,当温度升高到135 ℃之后,虽然LATP的结构并未发生变化,但其活化能由0.3 eV增加到0.53 eV,这表明LATP(x=0.3)的离子传导机理发生了变化。研究表明,随着温度升高,M1位点的占有率减少,相反,M3位点的占有率则增加[59,71]。因此,温度升高会导致M1和M3位点的锂离子扩散发生去协同化,增加了M3位点锂离子之间的扩散概率。温度升高到135 ℃后,锂离子会从M3位点直接扩散到下一个M3位点[图2(b)],由于M3→M3的距离(3.60 Å,1 Å=10-10 m)比M1→M3的距离(2.89 Å)大,因此活化能增加。

图2

图2   (a) 在实验室(实心圆)和旋转参照系(空心圆)下研究的Li1.5Al0.5Ti1.5(PO4)37Li NMR自旋-晶格弛豫(SLR)速率R1RArrhenius曲线[70](b) LATP陶瓷电导率的Arrhenius曲线(插图:在T >135 ℃时,Li+可能的主要传导途径)[71]

Fig.2   (a) Arrhenius plot of 7Li NMR SLR rates R1 and R of Li1.5Al0.5Ti1.5(PO4)3 investigated in laboratory (filled circles) and rotating frame of reference (empty circles), respectively[70]; (b) Arrhenius plot of conductivity of LATP ceramic (inset:possible predominant Li conduction pathway at T > 135 )[71]


1.3 协同迁移方式

通过AIMD(Ab initio molecular dynamics)模拟分析超离子导体Li10GeP2S12、Li7La3Zr2O12和Li1.3Al0.3Ti1.7(PO4)3中锂离子的迁移动力学,He等[72]发现,Li+以高度协同的方式迁移,而不是单个锂离子从一个晶体学位点跳跃至另一个位点[图3(a)]。Li1.3Al0.3Ti1.7(PO4)3的典型协同迁移模式为,相邻的M1和M2位点的两个锂离子成对迁移→M1位点的Li+跃迁到相邻未完全占据的M2位点,与此同时,M2位点的Li+则跃迁至下一个相邻的M1位点[图3(b)]。计算得到的协同迁移活化能为0.27 eV,与实验值(约0.3 eV)较为接近。He等指出,Li+同时占据低能位点(M1)和高能位点(M2)以及两种Li+位点的强相互作用力是实现能垒较低的协同迁移的关键。Wang等[73]在对LiTaSiO5的研究中也得到了同样的结论。

图3

图3   (a)单离子迁移和多离子协同迁移示意图;(b) LATP中多个锂离子协同迁移的能垒:插图展示了Li+的迁移通道(绿球)和氧原子(黄球)[72]

Fig.3   (a) schematic illustration of single-ion migration versus multi-ion concerted migration; (b) migration energy barrier in LATP for concerted migration of multiple Li ions: Insets show Li+ path (green spheres) and O atoms (yellow spheres) [72]


2 合成方法

2.1 湿法化学法

湿法化学法可以使原材料在分子水平上均匀混合,能在较低温度和较短的烧结时间内获得多晶粉末,而且由于在原材料和合成条件上有多种选择,晶粒的尺寸和组成可控;但是湿法化学法通常会产生团聚,导致无机粉末的烧结性较低[74-76]

2.1.1 溶胶-凝胶法

溶胶-凝胶法被普遍认为可以用于制备粒径小、纯度高的无机粉体。与传统的固相法相比,溶胶-凝胶法可以通过选择合适的煅烧条件(温度、时间)来更加精确地控制颗粒的尺寸和结晶度等物理性能[77]

Schell等[77]通过溶胶-凝胶法研究了煅烧温度对Li1.3Al0.3Ti1.7(PO4)3离子电导率的影响,发现经400 ℃热处理过的凝胶粉末在900 ℃煅烧后的结晶度最高,陶瓷片的密度和离子电导率也达到最大值。Liu等[78]则研究了热处理气氛对溶胶-凝胶法制备Li1.4Al0.4Ti1.6(PO4)3粉体粒径、分散性的影响(图4)。他们发现,与传统的溶胶-凝胶法相比,由于聚合物网络可以限制颗粒生长并隔绝颗粒接触,两步热处理合成的Li1.4Al0.4Ti1.6(PO4)3颗粒更小(40 nm),并且团聚程度更小,其陶瓷片的相对密度达到97%,离子电导率为5.9×10-4 S/cm。Zhao等[74]用改进的Pechini方法合成Li1.3Al0.3Ti1.7(PO4)3电解质,并研究了分散剂对其电学特性的影响。与不加分散剂或与乙二醇分散剂相比,葡萄糖当分散剂效果最佳,得到的Li1.3Al0.3Ti1.7(PO4)3总离子电导率达到最大值(6.0×10-4 S/cm,T=303 K)。Kotobuki等[79]使用不同的Al源通过溶胶-凝胶法合成了Li1.5Al0.5Ti1.5(PO4)3。结果表明,Al源为Al(C3H7O)3时,产物为纯相,并且离子电导率更高,而Al源为Al(NO3)3时,产物中出现了离子绝缘相AlPO4。AlPO4杂质的出现可能是由于Al源和Ti源混合不充分引起的。

图4

图4   LATP制备示意图:传统的一步煅烧和改进的两步煅烧的溶胶-凝胶法[78]

Fig.4   Schematic illustration of preparation of LATP by conventional one-step calcination and modified two-step calcination sol-gel methods[78]


2.1.2 共沉淀法

Kotobuki等[31]通过共沉淀法制备LATP(x=0.5),并研究了前体煅烧温度对LATP(x=0.5)性质的影响。该共沉淀过程如下:在剧烈搅拌下,将Li2C2O4和Al(NO3)3·9H2O的混合水溶液加入NH4HCO3溶液中获得共沉淀物,然后加入Ti(C3H7O)4和NH4H2PO4溶液。100 ℃下蒸发溶剂后,在500~900 ℃下煅烧30 min。煅烧温度为800 ℃时得到的LATP(x=0.5)离子电导率最高。Huang等[64]以NH4HCO3为沉淀剂制备了纯相的LATP(x=0.3)粉末,其一次颗粒粒径为200~500 nm。在900 ℃下烧结6 h后,LATP(x=0.3)的相对密度达到97%,总离子电导率和体相电导率分别为1.83×10-4 S/cm,2.19×10-3 S/cm。Kotobuki等[75]在800 ℃加热含Li、Al、Ti和P的沉淀物30 min,获得纯相LATP(x=0.5)多晶粉末,SEM表明经1050 ℃烧结得到的LATP陶瓷片中的晶粒接触紧密,没有观察到明显的孔隙,30 ℃下总的离子电导率为1.5×10-4 S/cm。

2.2 熔融-淬火

通过烧结获得的LATP固体电解质片体总是会存在一定数量的孔隙,这会降低LATP总的离子电导率,而熔融-淬火方法可以制备没有孔隙的致密LATP陶瓷,离子电导率甚至能达到1.3×10-3 S/cm[80-81]。熔融-淬火方法包括原料的混合、预热(释放挥发性物质H2O、CO2和NH3等)、高温熔融和淬火等环节。Soman等[80]研究了LATP的熔融-淬火制备方法以及样品中晶相含量与离子电导率的相关性。制备过程如下:将Li2CO3、NH4H2PO4、Al(OH)3和TiO2混合均匀,在700 ℃热处理1 h以释放挥发性产物后,在1450 ℃熔融2 h,之后将熔体夹在预热过(约300 ℃)的两块黄铜板之间缓慢冷却至室温形成玻璃体,最后在550~950 ℃下进行晶化处理制得LATP玻璃-陶瓷。随着晶化温度升高,LATP玻璃-陶瓷的XRD衍射峰强度逐渐增大,离子电导率也逐渐增加,在850 ℃达到最大值,温度升高到950 ℃时,由于出现了离子绝缘相AlPO4,离子电导率反而降低(图5)。

图5

图5   LATP玻璃-陶瓷的室温电导率随热处理温度的变化[80]

Fig.5   Room temperature DC conductivity plotted against heat treatment temperature for glass-ceramic series samples[80]


2.3 固相法

固相法是最为传统、简便的方法。原料(如Li2CO3、NH4H2PO4、Al2O3和TiO2)经干燥,按一定化学计量比混合后,通常在400 ℃左右预烧,再在大于900 ℃的高温下煅烧即可得到目标产物[60-61, 82-84]。固相法受原料混合不易均匀、反应温度高、时间长等因素的影响,通常样品中会有杂质(AlPO4、TiO2等)产生,导致固体电解质的离子电导率降低[74]。在固相法制备LATP的过程中,引入机械球磨可以有效提高样品的质量。机械球磨方法简单、高效、能耗和成本低,已经被广泛用于制备分散性高、相组成均一性好的无机固体电解质[85-87]。机械球磨过程中,原料颗粒尺寸逐渐减小,有利于原料粉体的分散和均匀混合,但球磨时间过长时,细小的颗粒会发生二次团聚,反而不利于原料粉体的混合和分散,因此需要仔细控制球磨时间[88]。此外,原料通过机械球磨预先活化可以降低随后的热处理温度[89],这可能是因为球磨使得原料混合得更加均匀以及球磨释放出的巨大机械能使原料发生了初步的反应,这一过程被称为机械活化。Morimoto等[90]以Li2O、γ-Al2O3、TiO2和P2O5为原料,先在室温下通过机械球磨形成无定形a-LATP(x=0.3),然后对a-LATP进行热处理制备晶态的c-LATP(x=0.3),热处理温度可以低至600 ℃。Kosova等[85]研究了机械活化对Li1+xAlxTi2-x(PO4)3(x=0、0.3)离子电导率的影响,发现机械活化可以大幅降低Li+长程扩散的活化能(晶界阻抗),但短程扩散(体相阻抗)的活化能没有明显的变化。晶界阻抗的降低可能是由于机械活化提高了LATP颗粒的烧结活性,引起了高离子导电性晶界的形成或者是避免了离子绝缘相的产生[85, 87]表2对LATP的合成方法进行了总结。

表2   Li1+xAlxTi2-x(PO4)3合成方法总结

Table 2  Summary of synthetic methods of Li1+xAlxTi2-x(PO4)3

合成方法x合成温度/℃产物相纯度颗粒形貌/粒径离子电导率/S·cm-1参考文献
溶胶-凝胶法0.3900纯相球形/多面体(0.3~4 μm)10-3(20 ℃)[63]
0.4800纯相球形(30~70 nm)、分散性好5.9×10-4(RT)[78]
0.3850微量Li4P2O7杂质团聚体粒径:20~30 μm6.0×10-4(303 K)[74]
共沉淀法0.5800微量Li3PO4杂质100~200 nm5.1×10-4(30 ℃)[31]
0.3800纯相一次颗粒粒径:200~500 nm1.83×10-4(30 ℃)[64]
0.5800纯相约100 nm1.5×10-4(30 ℃)[75]
熔融-淬火法1450纯相玻璃-陶瓷片~10-4(RT)[80]
0.31400AlPO4杂质4×10-4(RT)[91]
1450AlPO4杂质玻璃-陶瓷片1.3×10-3(RT)[81]
固相法0.45850纯相一次颗粒粒径:约1 μm4×10-4(25 ℃)[89]
0.39001.5×10-4(25 ℃)[90]
0.3900微量TiO2等杂质<1 μm,粒径分布较大6.2×10-5(25 ℃)[85]

新窗口打开| 下载CSV


3 提升离子电导率的途径

3.1 体相掺杂

提高固体电解质的本征离子电导率可以从两方面考虑[58, 69]:①提高载流子浓度;②提高载流子移动性。固体电解质的晶体结构对载流子的移动性起着决定性作用,元素掺杂可以调整晶体结构,使之更适合载流子传输,异价元素掺杂还能提高载流子浓度。Winand等[92]提出,取代和被取代的两种阳离子的半径差异不超过0.1 Å时,取代阳离子能很顺利地进入晶格形成固溶体,因此元素掺杂需要考虑离子半径的差异性。定性地看,通过元素掺杂扩大传输通道能促进锂离子的运动,从而提高离子电导率。但是Francisco等[58]的研究结果表明,当掺杂离子半径过大时,虽然晶胞体积有所增大,但是离子传输“瓶颈”会扭曲变形,导致传输通道变得更小,锂离子的运动因而受到限制。

对于LATP,半径较小的Al3+部分取代Ti4+会导致[Ti/Al]O6八面体的键长和体积变小,并引起其他一些化学键的键长发生变化,从而使得LATP的晶轴ac变小,其中c的减小程度更大[60-61, 82]。但是,与未掺杂的LTP(体相离子电导率σb≈10-6 S/cm,总的离子电导率σt=10-8 S/cm)[83, 93-95]相比,由于掺杂后的陶瓷片致密度、晶体骨架中锂离子浓度和移动性的提高,LATP的离子电导率(σb≈10-3 S/cm,σt=7×10-4 S/cm)得到了大幅提升[31-33]。在LATP中,Al3+掺杂对离子电导率最重要的贡献就是锂离子浓度的增加,而且这些间隙锂离子位于亚稳态位点,易于热激发或电激发从而实现锂离子的快速传输[68]。Arbi等[61]、Redhammer和Rettenwander等[60, 96]的研究表明,Al含量的增加有助于提高锂离子的移动性,而且M3位点的锂离子移动性比M1位点的更高。表3总结了Al元素掺杂对Li1+xAlxTi2-x(PO4)3结构和离子电导率的影响。

表3   Al元素掺杂对Li1+xAlxTi2-x(PO4)3结构和离子电导率的影响

Table 3  Influence of Al element doping on structure and ionic conductivity of Li1+xAlxTi2-x(PO4)3

x晶格常数/Å[60]位点占有率(T=300 K)[61]σb(RT)/S∙cm-1
acM1M3
08.517320.85950.850.152.81×10-6[96]
0.18.511820.84234.3×10-3[82]
0.28.506620.82590.760.415.2×10-3[82]
0.38.501420.80866.5×10-3[82]
0.48.496420.78630.720.557.7×10-3[82]

新窗口打开| 下载CSV


3.2 晶界杂质与缺陷调控

一般来说,固体电解质的离子电导率使用粉末压制烧结形成的陶瓷片,通过交流阻抗谱测试得到。阻抗谱含有LATP本征(体相)和晶界的离子传导阻抗,晶界的存在会使总的离子电导率降低,而且对于LATP,晶界阻抗比体相阻抗大得多,对总离子电导率有着极大的影响[27,85]。晶界阻抗受到晶界缺陷,如陶瓷片的裂纹、烧结不充分引起的孔隙等,以及杂质相的影响,减少晶界缺陷和杂质相可以提高LATP总的离子电导率。

3.2.1 晶界缺陷及调控

烧结制备陶瓷片的过程中,当LATP的晶粒尺寸过大时,裂纹会沿着晶界产生[36],成为一种晶界缺陷,这会使晶界阻抗增大,阻碍锂离子在晶粒之间的传输,因此控制晶粒的生长就显得尤为重要。另外,选择合适的LATP粉末合成和烧结条件也可以减少LATP陶瓷片的孔隙数量,从而降低晶界阻抗。

Jackman等[97]研究了微裂纹对LATP离子电导率的影响,发现由于晶界阻抗的增加,微裂纹的形成会导致离子电导率降低,而裂纹的形成同晶粒尺寸有很大关系,当晶粒尺寸超过临界晶粒尺寸(≤1.6 μm)时,裂纹开始出现。Hupfer等[98]的研究表明,随着烧结温度的升高,LATP(x=0.3)晶粒的平均尺寸增大(>1 μm),裂纹的数量随之也增加,这导致了离子电导率大幅降低。裂纹可能由LATP晶轴ac高度各向异性的热膨胀系数(αc=31×10-6 K-1αa=0.38×10-6 K-1)引起的机械应力导致,而应力大小与晶粒尺寸直接相关,控制晶粒生长不超过临界晶粒尺寸,能减少裂纹的产生[99]。Waetzig等[100]发现,LATP(x=0.3)的烧结温度为950 ℃、1000 ℃时,晶粒尺寸分别为0.7 μm和1.1 μm,微裂纹仅出现在AlPO4晶粒内及其周围[图6(a, b)];当温度升高到1050 ℃时,LATP晶粒长得更大(1.89 μm),许多裂纹出现了在LATP主相上[图6(c)]。Waetzig等对LATP(x=0.3)陶瓷片微裂纹的形成给出了两种解释:①烧结温度为1050 ℃时,LATP主相上微裂纹的形成是LATP晶轴ac热膨胀高度各向异性的结果,微裂纹产生的临界晶粒尺寸为1.1~1.89 μm,与Jackman等[97]提出的临界晶粒尺寸相近;②但是,AlPO4仅有轻微的热膨胀各向异性,因此不能用①来解释AlPO4微裂纹的产生。烧结温度≥950 ℃时,由于Li2O的蒸发,LATP(1310.3 Å3)转变为晶胞体积较小的AlPO4(351.5 Å3)和TiO2(62.4 Å3),这样的转变会在AlPO4晶界处产生应力,从而导致裂纹的形成[图6(a)]。

图6

图6   不同温度烧结的LATP陶瓷的微观结构[100]

Fig.6   Microstructure of LATP ceramics sintered at different temperatures[100]


Kotobuki等[31]研究了煅烧温度对LATP(x=0.5)陶瓷片孔隙度的影响。在500 ℃、600 ℃和700 ℃煅烧得到的LATP粉末的结晶度较低,在之后的烧结过程中,结晶度的进一步完善会引起颗粒体积收缩,导致在烧结片中形成孔隙。煅烧温度为900 ℃的LATP在相同的烧结过程中很稳定,因此烧结不够充分,烧结片中依然留有较多孔隙。而煅烧温度为800 ℃的LATP没有杂质形成,结晶度也相对较高,烧结后孔隙少,因此相对密度和总离子电导率均为最高(97%,5.1×10-4 S/cm)。Yu等[101]发现陶瓷片致密度的增加能有效降低晶界阻抗,提高离子电导率。

3.2.2 晶界杂质相

对固体电解质进行烧结的过程中,产生的杂质倾向位于晶界,但也可能位于晶粒内部或者是样品表面,位于晶界处的离子绝缘性杂质会阻碍锂离子传输,导致离子电导率降低[31, 97]。AlPO4是LATP固体电解质制备过程中比较常见的绝缘性杂质。

Thokchom等[102]研究了NASICON结构Li1.5Al0.5Ge1.5(PO4)3(LAGP)电解质中AlPO4杂质对活化能和离子电导率的影响。晶界处的AlPO4对Li+的吸附(AlPO4+Li+AlPO4:Li+)会导致空间电荷效应,从而影响Li+在晶界处的传输。如图7(a)所示,所有样品的Arrhenius曲线均出现拐点,并且随着晶化时间的增加总离子电导率逐渐降低,这是因为晶界处AlPO4晶粒尺寸和含量增加,导致了高阻抗晶界的形成。晶化时间为8 h和16 h时,Ea1(拐点右侧的活化能)没有变化;晶化时间增加到24 h时,Ea1减小,但是所有样品的Ea2(拐点左侧的活化能)没有明显变化(表4)。如图7(b)所示,在较低温度下(Arrhenius曲线拐点右侧),Li+从晶粒内部出来后,它会围着AlPO4微晶,沿着由AlPO4 :Li+络合物形成的曲折路径移动,该路径表现出较高活化能Ea1。温度升高后(拐点左侧),AlPO4 :Li+复合物解离,Li+从晶界扩散开,空间电荷效应消失,此时活化能Ea2反映的是晶粒内部和晶界的离子传输。当AlPO4含量较少、粒径较小时,在晶界处空间电荷调控的离子传输占主导作用,这种传输表现出较高的活化能Ea1图7(c)]。AlPO4含量和/或粒径的增加后,阻塞效应出现,离子在晶界的迁移受到阻碍[图7(c)]。

图7

图7   (a) 825 ℃晶化8 h16 h24 hLAGP总离子电导率的Arrhenius曲线;(b) 空间电荷效应调控的锂离子传输示意图;(c) 空间电荷效应和阻塞效应及其对介电相(DP)浓度(晶粒尺寸)的依赖性示意图[102]

Fig.7   (a) Arrhenius plots of total conductivity of LAGP crystallized at 825 for 8 h, 16 j, and 24 h; (b) schematicrepresentation of lithium ion transport mediated by space charge; (c) schematic representation of space charge and blocking effects and their dependence on the concentration (size) of the dielectric phase (DP)[102]


表4   825 ℃晶化不同时间的LAGP的活化能

Table 4  Activation energy of LAGP crystallized at different times at 825

晶化时间/hEa1/eVEa2/eV
80.610.30
160.610.31
240.510.30

新窗口打开| 下载CSV


在LATP中也观察到了AlPO4在晶界处对离子传输有类似的阻碍效应。Hupfer等[98]在LATP(x=0.3)粉末中加入了5% LiTiOPO4来调控AlPO4杂质含量,在烧结的过程中LiTiOPO4和AlPO4会反应形成LATP。经920 ℃烧结10 min后,LATP的AlPO4杂质含量减少,离子电导率比未添加LiTiOPO4的LATP陶瓷片要高。

Key等[103]分别在650 ℃和750 ℃制备了LATP多晶粉末,根据核磁共振数据判断,650 ℃下制备的LATP的AlPO4(无定形)含量相对较少,而且陶瓷片烧结效果好,具有熔融的晶界,而AlPO4含量较多的LATP陶瓷片出现了晶界分离,孔隙度较大。这些结果表明,无定形AlPO4对烧结过程有抑制作用,会导致陶瓷片的孔隙度增加。

因此,提高LATP固体电解质的离子电导率需要避免杂质相的产生,而要实现这个目的,需优化LATP的合成以及烧结方法。通常,原料的均匀混合以及较温和的反应条件能减少杂质的生成,因此湿法化学很适合用于制备高纯度的LATP粉末。另外,适当降低烧结温度和缩短烧结时间能避免LATP分解产生杂质相。

4 LATP电解质/正极界面稳定性和调控策略

由于LATP是刚性体,作为固体电解质用于全固态电池时,与同样刚性的正极活性材料很难形成良好、全面的接触,妨碍了LATP/正极材料之间的离子传输,成为LATP应用过程中的关键问题。目前,固体电解质和电极的固固界面研究难度大、观测手段有限,对界面反应和界面动力学的理解还不够深入[104]。由于接触性差、热膨胀的差异性和界面反应,固体电解质/电极界面处存在较大的电荷迁移阻抗,影响着电池性能的发挥[105]

电极活性材料和固体电解质共烧结可以有效改善两种材料的界面接触性[106-107],但是对相互接触的电极活性材料和固体电解质进行热处理会引起两种材料在界面附近发生元素相互扩散,甚至发生副反应产生对电池电化学性能不利的杂质相[108]

研究表明,LATP固体电解质和LiCoPO4或者Li3Fe2(PO4)3活性材料共烧结(900~1000 ℃)在一起时,虽然会发生元素相互扩散,但是没有出现杂质相,并且形成的界面具有电化学活性[108-109]。LiCoO2经磁控溅射沉积及随后的热处理(500 ℃),与LATP电解质片形成了清晰的界面,全固态电池[图8(a)]循环充放电50圈后也没有任何界面相形成,表明在该条件下LiCoO2/LATP界面具有较好的(电)化学稳定性,这有利于提高电池的容量保持率和倍率性能,而且LiCoO2和LATP的组成元素没有发生明显的相互扩散[图8(b)、(c)][105]。但是,Gellert等[110]研究表明,LATP和LiCoO2混合物的热处理温度达到600 ℃及以上时,LiCoO2会分解生成Co3O4

图8

图8   (a) 全固态电池LiCoO2/LATP/Li结构示意图;(b)(c) 循环50圈后,LiCoO2/LATP界面的EDS线扫和元素mapping[105]

Fig.8   (a) schematic diagram of all-solid LiCoO2/LATP/Li cell; (b)(c) compositional EDS line scan and elemental mapping data of LiCoO2/LATP interface after 50 cycles[105]


Kato等[111]通过脉冲激光沉积(PLD)将正极材料LiNi1/3Co1/3Mn1/3O2(NMC,Co3+)沉积在LATP电解质上,然后分别在700 ℃和900 ℃下烧结形成了NMC-700/LATP和NMC-900/LATP两个界面,对两个界面的结构和阻抗的研究表明,两个界面处都形成了约30 nm厚的元素相互扩散区(图9)。但是,NMC-700/LATP和NMC-900/LATP的界面阻抗分别为495 Ω和179 kΩ,差别明显。这是因为NMC-900/LATP界面处形成了Co2+的富集区以及MnCo2O4杂质,导致其界面阻抗(179 kΩ)比NMC-700/LATP的大了3个数量级。可见,烧结温度对LATP和NMC的界面特性有着极大影响,需选择合适的烧结温度来改善两者的界面特性。Hoshina等[112]通过旋涂法和随后的热处理在LATP电解质片上形成LiNi0.5Mn1.5O4电极薄膜。在700 ℃和800 ℃进行热处理后,LiNi0.5Mn1.5O4/LATP界面处均有杂质产生,CV曲线上的电流响应非常小。这表明,LiNi0.5Mn1.5O4和LATP有较高的反应活性,即LiNi0.5Mn1.5O4/LATP界面热力学不稳定。

图9

图9   NMC/LATP界面附近OPTiMnNiCo元素的EDX线扫图[111]

Fig.9   EDX line profile of O, P, Ti, Mn, Ni, and Co around NMC/LATP sheet interface[111]


除了共烧结之外,在LATP和正极活性材料之间引入一层聚合物电解质膜也可以作为一种改善LATP/正极界面的策略[113-115]。Liang等[114]在LATP陶瓷片的一侧涂覆一层抗氧化的聚丙烯腈(PAN)基聚合物电解质膜,与LiNi0.6Mn0.2Co0.2O2(NCM622)形成软接触,大大提高了LATP和NCM622的界面润湿性,从而降低了界面阻抗,并且Li/LATP/NCM622全电池在60 ℃和0.1 C下的初始放电容量为168.2 mA·h/g,循环120圈后,容量保持率为89%,而没有PAN涂层的全电池由于阻抗太大几乎没有容量。

5 LATP固体电解质对锂金属负极的电化学稳定性和改良措施

LATP对锂金属不稳定,因为Ti4+易被还原为Ti3+,在LATP/Li界面处形成高阻抗界面相,并且在循环充放电过程中,该界面相厚度会逐渐增加[116]。如图10(a)所示,随着NASICON结构固体电解质Li1+xAlxGeyTi2-x-y(PO4)3(LATGP)与锂金属接触时间的延长,LATGP的阻抗逐渐增加,而且LATGP表面变黑,这表明LATGP被锂金属还原了[117]。接触12 h后,从LATGP/Li界面到距离界面15 μm处,LATGP发生了显著变化[图10(b)],这表明LATGP与Li的还原反应扩展到了LATGP内部。Hartmann等将这15 μm厚的混合离子/电子导电区称为混合导电中间相(MCI)。由于锂离子和电子都能在MCI中传输,LATGP会被不断还原。

图10

图10   (a) Li/LATGP/Li的阻抗谱;(b) LATGP与锂金属接触12 h后横截面的SEM照片:白色箭头表示Li元素扩散进入LATGP[117]

Fig.10   (a) impedance spectra of Li/LATGP/Li; (b) SEM cross-section image of a LATGP sample after approximately 12 h contact with lithium metal: the white arrow indicates chemical diffusion of lithium into material[117]


无机涂层可以避免LATP和锂金属直接接触,抑制两者之间的副反应,并且还能提高LATP固体电解质对锂金属的润湿性,进一步降低界面阻抗,是一种改善LATP/Li界面稳定性的有效措施[116, 118-120]。Liu等[116]通过原子层沉积(ALD)将15 nm厚的Al2O3沉积在LATP片体表面,Al2O3涂层可以减缓LATP与Li的副反应,提高LATP的循环性能(图11)。由于Al2O3的离子绝缘特性,Li/Al2O3@LATP@Al2O3/Li电池的初始过电势(10 V)比Li/LATP/Li的要高,但是循环100圈后,过电势迅速降低至0.9 V,并且在之后的循环过程保持稳定,这是因为Al2O3锂化形成了稳定的离子导电界面相Li-Al-O,大大降低了LATP/Li的界面阻抗。

图11

图11   Li/Al2O3@LATP@Al2O3/LiLi/LATP/Li对称电池在0.01 mA/cm2电流密度下的电化学行为以及LATP/Li界面示意图[116]

Fig.11   Electrochemical behavior of Li/Al2O3@LATP@Al2O3/Li and Li/LATP/Li symmetrical cell at a current density of 0.01 mA/cm2 and schematic diagram of LATP/Li interface with and without Al2O3[116]


Hao等[118]通过磁控溅射在LATP片体表面涂覆了一层超薄的亲锂性ZnO来改善LATP和锂金属的界面稳定性,Li与ZnO可以原位形成Zn+Li2O多功能保护层。由于Li+沉积反应倾向于在合金位点均匀成核,Li与Zn形成的均匀分布的Li-Zn合金可以抑制锂枝晶形成。另外,Zn+Li2O层低的电子电导率(7.43×10-9 S/cm)以及ZnO在LATP表面和晶界的涂覆可以阻止Li+沿着晶界沉积进入LATP片体内部,从而避免对LATP的破坏和电池短路。Li/LATP/LiFePO4全电池的电阻高达3 kΩ,而Li/ZnO@LATP/LiFePO4的电阻仅为约300 Ω,具有167.3 mA·h/g的比容量,循环200圈后容量保持率高达88%。Cheng等[120]在900 ℃下通过化学气相沉积将氮化硼(BN)纳米薄膜(约5~10 nm)沉积在LATP表面以隔绝锂金属。纳米尺度的BN涂层还能提高电池的能量密度,而且BN的电子电导率(10-15 S/cm)极低、模量高,有利于抑制锂枝晶的生长。LiNi0.33Mn0.33Co0.33O2/LATP/BN/Li全电池在0.5 C(1 C=150 mA·h/g)下的初始比容量为142 mA·h/g,循环100圈后,容量和容量保持率分别为132 mA·h/g和92.9%。

有机聚合物涂层也可以有效改善LATP对锂金属负极的稳定性。大部分有机聚合物电解质是电子绝缘体,具有很好的柔韧性,用作LATP电解质的保护层不仅可以提高LATP和电极的界面稳定性,还能改善两者之间的界面接触。聚(乙二醇)甲基醚丙烯酸酯交联聚合物(CPMEA)对锂金属表面的润湿作用不仅能降低界面阻抗,还能使Li+均匀通过LATP/Li界面,从而抑制锂枝晶的形成[121]。LiFePO4/CPMEA/LATP/CPMEA/Li全电池循环640圈后,阻抗仅略微增加,库仑效率为99.8%~100%,这表明该全固态电池具有较稳定的电化学性能[121]。Yu等[113]在LATP陶瓷片表面涂上聚合物电解质保护层,设计了聚合物/LATP/聚合物三明治结构的层状混合固体电解质(LHSE)。由于聚合物的低黏度和充足的延展性,聚合物和LATP形成了紧密接触的界面[图12(a, b)]。Li/LHSE/Li的总阻抗在60 h后也没有发生变化,而且Li/LHSE/Li的恒电流极化展示了电池电压没有明显变化,说明LHSE对Li的(电)化学稳定性高。另外,LHSE的循环伏安实验表明,聚合物电解质保护层能将LATP的电化学稳定窗口由2.17~4.21 V拓展到0~4.7 V。如图12(c)所示,Li/LHSE/Li3V2(PO4)3-CNT固态电池循环500圈后的放电容量为107.6 mA·h/g,是初始容量的88.2%、Li3V2(PO4)3正极理论容量的81.8%。

图12

图12   (a, b) 层状混合固体电解质的横截面SEM照片;(c) Li/LHSE/Li3V2(PO4)3-CNT的循环性能[113]

Fig.12   (a, b) SEM cross-sectional images of layered hybrid solid electrolyte; (c) cycling performance of Li/LHSE/Li3V2(PO4)3-CN[113]


6 结论与展望

本文重点关注了LATP固体电解质的离子扩散机理、相应的离子电导率以及与正极活性材料、锂金属负极的界面问题,考虑到制备过程对LATP晶界离子电导率的影响,也对合成方法进行了综述。Al3+部分取代Ti4+增加了LATP的锂离子浓度,提高了锂离子在晶体骨架中的移动性。LATP的晶体骨架中具有三维离子迁移通道,锂离子分布在不同的晶体学位点,额外引入的锂离子的分布位置存在争议,还需要进一步进行研究。研究LATP固体电解质中的离子传输问题可以加深对LATP超离子传导现象的理解,对设计高离子电导率的固体电解质有指导性意义。对LATP离子扩散机理的研究表明,锂离子在晶体内部的迁移不仅仅发生在单个晶体学位点,可能会涉及多个晶体学位点。间隙扩散过程、多个锂离子协同迁移过程对锂离子在LATP晶体内的快速迁移起到重要作用。有趣的是,升高温度可能会改变LATP的离子扩散机理。颗粒粒径小、分散性高的LATP颗粒烧结活性高,不仅可以提高LATP陶瓷片的致密度,还能降低烧结温度和缩短烧结时间,避免LATP晶粒过度生长引起裂纹以及在高温下分解产生杂质。LATP粉末及其陶瓷片的制备方法和条件控制对降低晶界阻抗,提高离子电导率十分重要。

LATP对磷酸盐体系正极相对稳定性高,但是对三元正极以及锂金属负极的化学和电化学稳定性低,阻碍了LATP在固态电池中的应用。在改善界面化学和电化学稳定性方面还缺乏有效的方法和思路,需要进行深入的研究和探讨。

参考文献

ZHANG S G, UENO K, DOKKO K, et al.

Recent advances in electrolytes for lithium-sulfur batteries

[J]. Advanced Energy Materials, 2015, 5(16): 1500117-1500144.

[本文引用: 1]

TAKADA K.

Progress in solid electrolytes toward realizing solid-state lithium batteries

[J]. Journal of Power Sources, 2018, 394: 74-85.

[本文引用: 1]

FAN Lei, WEI Shuya, LI Siyuan, et al.

Recent progress of the solid-state electrolytes for high-energy metal-based batteries

[J]. Advanced Energy Materials, 2018, 8(11): 1702657-1702687.

[本文引用: 1]

ZHENG Feng, KOTOBUKI M, SONG Shufeng, et al.

Review on solid electrolytes for all-solid-state lithium-ion batteries

[J]. Journal of Power Sources, 2018, 389: 198-213.

[本文引用: 2]

SUN Chunwen, LIU Jin, GONG Yudong, et al.

Recent advances in all-solid-state rechargeable lithium batteries

[J]. Nano Energy, 2017, 33: 363-386.

[本文引用: 1]

YAO Xiayin, HUANG Bingxin, YIN Jingyun, et al.

All-solid-state lithium batteries with inorganic solid electrolytes: Review of fundamental science

[J]. Chinese Physics B, 2016, 25(1): doi: 10.1088/1674-1056/25/1/018802.

[本文引用: 1]

ZHANG Zhizhen, SHAO Yuanjun, LOSTCH B, et al.

New horizons for inorganic solid state ion conductors

[J]. Energy & Environmental Science, 2018, 11(8): 1945-1976.

[本文引用: 1]

DOKKO K, HOSHINA K, NAKANO H, et al.

Preparation of LiMn2O4 thin-film electrode on Li1+xAlxTi2-x(PO4)3 NASICON-type solid electrolyte

[J]. Journal of Power Sources, 2007, 174(2): 1100-1103.

[本文引用: 1]

CHEN Chunhua, XIE Song, SPERLING E, et al.

Stable lithium-ion conducting perovskite lithium-strontium-tantalum-zirconium-oxide system

[J]. Solid State Ionics, 2004, 167(3/4): 263-272.

[本文引用: 1]

RAMAKUMAR S, DEVIANNAPOORANI C, GHIVYA L, et al.

Lithium garnets: Synthesis, structure, Li+ conductivity, Li+ dynamics and applications

[J]. Progress in Materials Science, 2017, 88: 325-411.

[本文引用: 2]

NAGATA H, CHIKUSA Y.

Activation of sulfur active material in an all-solid-state lithium-sulfur battery

[J]. Journal of Power Sources, 2014, 263: 141-144.

ARBI K, ROJO J M, SANZ J.

Lithium mobility in titanium based NASICON Li1+xTi2-xAlx(PO4)3 and LiTi2-xZrx(PO4)3 materials followed by NMR and impedance spectroscopy

[J]. Journal of the European Ceramic Society, 2007, 27(13/14/15): 4215-4218.

[本文引用: 1]

ZHAO Yusheng, DAEMEN L L.

Superionic conductivity in lithium-rich anti-perovskites

[J]. Journal of the American Chemical Society, 2012, 134(36): 15042-15047.

[本文引用: 1]

HAN Xiaogang, GONG Yunhui, FU Kun, et al.

Negating interfacial impedance in garnet-based solid-state Li metal batteries

[J]. Nature Materials, 2017, 16(5): 572-579.

[本文引用: 1]

LUO Wei, GONG Yunhui, ZHU Yizhou, et al.

Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte

[J]. Journal of the American Chemical Society, 2016, 138(37): 12258-12262.

WANG Chengwei, GONG Yunhui, LIU Boyang, et al.

Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes

[J]. Nano Letters, 2017, 17(1): 565-571.

BROEK J VAN DEN, AFYON S, RUPP J L M, et al.

Interface-engineered all-solid-state Li-ion batteries based on garnet-type fast Li+ conductors

[J]. Advanced Energy Materials, 2016, 6(19): doi: 10.1002/adma.201600736.

NAGAO M, HAYASHI A, TATSUMISAGO M, et al.

Bulk-type lithium metal secondary battery with indium thin layer at interface between Li electrode and Li2S-P2S5 solid electrolyte

[J]. Electrochemistry, 2012, 80(10): 734-736.

ZHANG Zhihua, ZHAO Yanran, CHEN Shaojie, et al.

An advanced construction strategy of all-solid-state lithium batteries with excellent interfacial compatibility and ultralong cycle life

[J]. Journal of Materials Chemistry A, 2017, 5(32): 16984-16993.

SAKUDA A, HAYASHI A, TATSUMISAGO M, et al.

Intefacial observation between LiCoO2 electrode and Li2S-P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy

[J]. Chemistry of Materials, 2010, 22(3): 949-956.

KATO T, HAMANAKA T, YAMAMOTO K, et al.

In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery

[J]. Journal of Power Sources, 2014, 260: 292-298.

FU Kun, GONG Yunhui, LIU Boyang, et al.

Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface

[J]. Science Advances, 2017, 3(4): 1601659-1601669.

[本文引用: 1]

XU Kang.

Nonaqueous liquid electrolytes for lithium-based rechargeable batteries

[J]. Chemical Reviews, 2004, 104(10): 4303-4417.

[本文引用: 1]

KAMAYA N, HOMMA K, YAMAKAWA Y, et al.

A lithium superionic conductor

[J]. Nature Materials, 2011, 10(9): 682-686.

[本文引用: 1]

KATO Y, HORI S, SAITO T, et al.

High-power all-solid-state batteries using sulfide superionic conductors

[J]. Nature Energy, 2016, 1: doi: 10.1038/nenergy.2016.30.

[本文引用: 1]

MURAMATSU H, HAYASHI A, OHTOMO T, et al.

Structural change of Li2S-P2S5 sulfide solid electrolytes in the atmosphere

[J]. Solid State Ionics, 2011, 182(1): 116-119.

[本文引用: 1]

BACHMAN J C, MUY S, GRIMAUD A, et al.

Inorganic solid-state electrolytes for lithium batteries: Mechanisms and properties governing ion conduction

[J]. Chemical Reviews, 2016, 116(1): 140-162.

[本文引用: 2]

LARRAZ G, ORERA A, SANJUAN M L.

Cubic phases of garnet-type Li7La3Zr2O12: The role of hydration

[J]. Journal of Materials Chemistry A, 2013, 1 (37): 11419-11428.

[本文引用: 1]

XIA Wenhao, XU Biyi, DUAN Huanan, et al.

Ionic conductivity and air stability of Al-doped Li7La3Zr2O12 sintered in alumina and Pt crucibles

[J]. ACS Applied Materials & Interfaces, 2016, 8(8): 5335-5342.

XIA Wenhao, XU Biyi, DUAN Huanan, et al.

Reaction mechanisms of lithium garnet pellets in ambient air: The effect of humidity and CO2

[J]. Journal of the American Ceramic Society, 2017, 100(7): 2832-2839.

[本文引用: 1]

KOTOBUKI M, KOISHI M.

Influence of precursor calcination temperature on sintering and conductivity of Li1.5Al0.5Ti1.5(PO4)3 ceramics

[J]. Journal of Asian Ceramic Societies, 2019, 7(1): 69-74.

[本文引用: 6]

MERTENS A, YU Shicheng, SCHON N, et al.

Superionic bulk conductivity in Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte

[J]. Solid State Ionics, 2017, 309: 180-186.

AONO H, SUGIMOTO E, SADAOKA Y, et al.

Ionic conductivity of the lithium titanium phosphate [Li1+xMxTi2-x(PO4)3, M=Al, Sc, Y, and La] systems

[J]. Journal of the Electrochemical Society, 1989, 136(2): 590-591.

[本文引用: 2]

ZHANG P, MATSUI M, TAKEDA Y, et al.

Water-stable lithium ion conducting solid electrolyte of iron and aluminum doped NASICON-type LiTi2(PO4)3

[J]. Solid State Ionics, 2014, 263: 27-32.

[本文引用: 1]

DASHJAV E, MA Qianli, XU Qu, et al.

The influence of water on the electrical conductivity of aluminum-substituted lithium titanium phosphates

[J]. Solid State Ionics, 2018, 321: 83-90.

[本文引用: 1]

XIAO Wei, WANG Jingyu, FAN Linlin, et al.

Recent advances in Li1+xAlxTi2-x(PO4)3 solid-state electrolyte for safe lithium batteries

[J]. Energy Storage Materials, 2019, 19: 379-400.

[本文引用: 2]

ZHAI Haowei, XU Pengyu, NING Mingqiang, et al.

A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries

[J]. Nano Letters, 2017, 17(5): 3182-3187.

[本文引用: 2]

BAN Xiaoyao, ZHANG Wenqiang, CHEN Ning, et al.

A high-performance and durable poly(ethylene oxide)-based composite solid electrolyte for all solid-state lithium battery

[J]. The Journal of Physical Chemistry C, 2018, 122(18): 9852-9858.

[本文引用: 1]

LI Dan, CHEN Long, WANG Tianshi, et al.

3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries

[J]. ACS Applied Materials & Interfaces, 2018, 10(8): 7069-7078.

BONIZZONI S, FERRARA, C, BERBENNI, V, et al.

NASICON-type polymer-in-ceramic composite electrolytes for lithium batteries

[J]. Physical Chemistry Chemical Physics, 2019, 21(11): 6142-6149.

LIU Lehao, CHU Lihua, JIANG Bing, et al.

Li1.4Al0.4Ti1.6(PO4)3 nanoparticle-reinforced solid polymer electrolytes for all-solid-state lithium batteries

[J]. Solid State Ionics, 2019, 331: 89-95.

PAN Kecheng, ZHANG Lan, QIAN Weiwei, et al.

A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries

[J]. Advanced Materials, 2020, 32(17): doi: 10.1002/adma.202000399.

余涛, 谢凯, 韩喻, .

PEO基Li1.5Al0.5Ge1.5(PO4)3固体复合电解质的制备

[J]. 储能科学与技术, 2015, 4(3): 273-277.

YU Tao, XIE Kai, HAN Yu, et al.

Preparation and characterization of PEO based Li1.5Al0.5Ge1.5(PO4)3 solid composite electrolyte

[J]. Energy Storage Science and Technology, 2015, 4(3): 273-277.

赵宁, 李忆秋, 郭向欣, .

纳米锂镧锆钽氧粉体复合聚氧化乙烯制备的固态电解质电化学性能的研究

[J]. 储能科学与技术, 2016, 5(5): 754-761.

[本文引用: 1]

ZHAO Ning, LI Yiqiu, GUO Xiangxin, et al.

Electrochemical performance of solid state electrolytes consisting of Li6.4La3Zr1.4Ta0.6O1.2 nanopowders dispersed in polyethylene oxides

[J]. Energy Storage Science and Technology, 2016, 5(5): 754-761.

[本文引用: 1]

HONG H Y P, GOODENOUGH J B.

Crystal structures and crystal chemistry in the system Na1+xZr2SixP3-xO12

[J]. Materials Research Bulletin, 1975, 11(2): 173-182.

[本文引用: 1]

PARK H, KANG M, PARK Y C, et al.

Improving ionic conductivity of NASICON (Na3Zr2Si2PO12) at intermediate temperatures by modifying phase transition behavior

[J]. Journal of Power Sources, 2018, 399: 329-336.

[本文引用: 1]

MOUAHID F E, BETTACH M, ZAHIR M, et al.

Crystal chemistry and ion conductivity of the Na1+xTi2-xAlx(PO4)3 (0≤x≤0.9) NASICON series

[J]. Journal of Materials Chemistry, 2000, 10(12): 2748-2757.

MA Qianli, GUIN M, NAQASH S, et al.

Scandium-substituted Na3Zr2(SiO4)2(PO4) prepared by a solution-assisted solid-state reaction method as sodium-ion conductors

[J]. Chemistry of Materials, 2016, 28(13): 4821-4828.

KAZAKEVICIUS E, KEZIONIS A, ZUKAUSKAITE L, et al.

Characterization of Na1.3Al0.3Zr1.7(PO4)3 solid electrolyte ceramics by impedance spectroscopy

[J]. Solid State Ionics, 2015, 271: 128-133.

BRADTMULLER H, NIETO-MUNOZ A M, ORTIZ-MOSQUERA J F, et al.

Glass-to-crystal transition in the NASICON glass-ceramic system Na1+xAlxM2-x(PO4)3 (M=Ge, Ti)

[J]. Journal of Non-Crystalline Solids, 2018, 489: 91-101.

LI Yutao, LIU Meijing, LIU Kai, et al.

High Li+ conduction in NASICON-type Li1+xYxZr2-x(PO4)3 at room temperature

[J]. Journal of Power Sources, 2013, 240: 50-53.

WEISS M, WEBER D A, WENYSHYN A, et al.

Correlating transport and structural properties in Li1+xAlxGe2-x(PO4)3 (LAGP) prepared from aqueous solution

[J]. ACS Applied Materials & Interfaces, 2018, 10(13): 10935-10944.

ZANGINA T, HASSAN J, AZIS R S, et al.

Analysis of thermal and electrical conductivity properties of Al substitution LiHf2(PO4)3 chemical solid electrolyte

[J]. SN Applied Sciences, 2019, 1(8): doi: 10.1007/S42452-019-0901-x.

CHAKIR M, JAZOULI A EL, DE WAAL D.

Synthesis, crystal structure and spectroscopy properties of Na3AZr(PO4)3 (A=Mg, Ni) and Li2.6Na0.4NiZr(PO4)3 phosphates

[J]. Journal of Solid State Chemistry, 2006, 179(6): 1883-1891.

ARBI K, BUCHELI W, JIMENEZ R, et al.

High lithium ion conducting solid electrolytes based on NASICON Li1+xAlxM2-x(PO4)3 materials (M=Ti, Ge and 0≤x≤0.5)

[J]. Journal of the European Ceramic Society, 2015, 35(5): 1477-1484.

[本文引用: 1]

TAKADA K, TANSHO M, YANASE I, et al.

Lithium ion conduction in LiTi2(PO4)3

[J]. Solid State Ionics, 2001, 139: 241-247.

[本文引用: 2]

HE Shengnan, XU Youlong, ZHANG Baofeng, et al.

Unique rhombus-like precursor for synthesis of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte with high ionic conductivity

[J]. Chemical Engineering Journal, 2018, 345: 483-491.

[本文引用: 1]

FRANCISCO B E, STOLDT C R.

Lithium-ion trapping from local structural distortions in sodium super ionic conductor (NASICON) electrolytes

[J]. Chemistry of Materials, 2014, 26: 4741-4749.

[本文引用: 6]

MONCHAK M, HUPFER T, SENYSHYN A, et al.

Lithium diffusion pathway in Li1.3Al0.3Ti1.7(PO4)3 (LATP) superionic conductor

[J]. Inorganic Chemistry, 2016, 55(6): 2941-2945.

[本文引用: 4]

REDHAMMER G J, RETTENWANDER D, PRISTAT S, et al.

A single crystal X-ray and powder neutron diffraction study on NASICON-type Li1+xAlxTi2-x(PO4)3 (0≤x≤0.5) crystals: Implications on ionic conductivity

[J]. Solid State Sciences, 2016, 60: 99-107.

[本文引用: 6]

ARBI K, HOELZEL M, KUHN A, et al.

Structural factors that enhance lithium mobility in fast-ion Li1+xTi2-xAlx(PO4)3 (0≤x≤0.4) conductors investigated by neutron diffraction in the temperature range 100~500 K

[J]. Inorganic Chemistry, 2013, 52(16): 9290-9296.

[本文引用: 7]

PEREZ-ESTEBANEZ M, ISASI-MARIN J, TOBBENS D M, et al.

A systematic study of NASICON-type Li1+xMxTi2-x(PO4)3 (M: Cr, Al, Fe) by neutron diffraction and impedance spectroscopy

[J]. Solid State Ionics, 2014, 266: 1-8.

[本文引用: 1]

BUCHARSKY E C, SCHELL K G, HINTENNACH A, et al.

Preparation and characterization of sol-gel derived high lithium ion conductive NZP-type ceramics Li1+xAlxTi2-x(PO4)3

[J]. Solid State Ionics, 2015, 274: 77-82.

[本文引用: 1]

HUANG Lezhi, WEN Zhaoyin, WU Meifen, et al.

Electrochemical properties of Li1.4Al0.4Ti1.6(PO4)3 synthesized by a co-precipitation method

[J]. Journal of Power Sources, 2011, 196(16): 6943-6946.

[本文引用: 2]

ARBI K, MANDAL S, ROJO J M, et al.

Dependence of ionic conductivity on composition of fast ionic conductors Li1+xTi2-xAlx(PO4)3, 0≤x≤0.7. A parallel NMR and electric impedance study

[J]. Chemistry of Materials, 2002, 14(3): 1091-1097.

ADACHI G Y, IMANAKA N, AONO H.

Fast Li+ conducting ceramic electrolytes

[J]. Advanced Materials, 1996, 8(2): 127-135.

KOSOVA N, DEVYATKINA E, OSINTSEV D.

Dispersed materials for rechargeable lithium batteries: reactive and non-reactive grinding

[J]. Journal of Materials Science, 2004, 39(16/17): 5031-5036.

[本文引用: 1]

LU Xia, WANG Senhao, XIAO Ruijuan, et al.

First-principles insight into the structural fundamental of super ionic conducting in NASICON MTi2(PO4)3 (M=Li, Na) materials for rechargeable batteries

[J]. Nano Energy, 2017, 41: 626-633.

[本文引用: 2]

LANG B, ZIEBARTH B, ELSASSER C.

Lithium ion conduction in LiTi2(PO4)3 and related compounds based on the NASICON structure: a first-principles study

[J]. Chemistry of Materials, 2015, 27(14): 5040-5048.

[本文引用: 2]

EPP V, MA Q, HAMMER E M, et al.

Very fast bulk Li ion diffusivity in crystalline Li1.5Al0.5Ti1.5(PO4)3 as seen using NMR relaxometry

[J]. Physical Chemistry Chemical Physics, 2015, 17(48): 32115-32121.

[本文引用: 3]

HALLOPEAU L, BREGIROUX D, ROUSSE G, et al.

Microwave-assisted reactive sintering and lithium ion conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte

[J]. Journal of Power Sources, 2018, 378: 48-52.

[本文引用: 4]

HE Xingfeng, ZHU Yizhou, MO Yifei.

Origin of fast ion diffusion in super-ionic conductors

[J]. Nature Communications, 2017, 8: doi: 10.1038/ncomms15893.

[本文引用: 3]

WANG Qi, WU Jianfang, LU Ziheng, et al.

A new lithium-ion conductor LiTaSiO5: Theoretical prediction, materials synthesis, and ionic conductivity

[J]. Advanced Functional Materials, 2019, 29(37): doi: 10.1002/adfm.201904232.

[本文引用: 1]

ZHAO Erqing, MA Furui, JIN Yongcheng, et al.

Pechini synthesis of high ionic conductivity Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes: The effect of dispersant

[J]. Journal of Alloys and Compounds, 2016, 680: 646-653.

[本文引用: 4]

KOTOBUKI M, KOISHI M, KATO Y.

Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a co-precipitation method

[J]. Ionics, 2013, 19(12): 1945-1948.

[本文引用: 2]

DULUARD S, PAILLASSA A, PUECH L, et al.

Lithium conducting solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 obtained via solution chemistry

[J]. Journal of the European Ceramic Society, 2013, 33(6): 1145-1153.

[本文引用: 1]

SCHELL K G, BUCHARSKY E C, LEMKE F, et al.

Effect of calcination conditions on lithium conductivity in Li1.3Ti1.7Al0.3(PO4)3 prepared by sol-gel route

[J]. Ionics, 2017, 23 (4): 821-827.

[本文引用: 2]

LIU Xingang, TAN Jiang, FU Ju, et al.

Facile synthesis of nanosized lithium-ion-conducting solid electrolyte Li1.4Al0.4Ti1.6(PO4)3 and its mechanical nanocomposites with LiMn2O4 for enhanced cyclic performance in lithium ion batteries

[J]. ACS Applied Materials & Interfaces, 2017, 9 (13): 11696-11703.

[本文引用: 4]

KOTOBUKI M, KOISHI M.

Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a sol-gel route using various Al sources

[J]. Ceramics International, 2013, 39(4): 4645-4649.

[本文引用: 1]

SOMAN S, IWAI Y, KAWAMURA J, et al.

Crystalline phase content and ionic conductivity correlation in LATP glass-ceramic

[J]. Journal of Solid State Electrochemistry, 2012, 16(5): 1761-1766.

[本文引用: 5]

FU Jie.

Superionic conductivity of glass-ceramics in the system Li2O-Al2O3-TiO2-P2O5

[J]. Solid State Ionics, 1997, 96(3/4): 195-200.

[本文引用: 2]

WANG Shaofei, Liubin BEN, LI Hong, et al.

Identifying Li+ ion transport properties of aluminum doped lithium titanium phosphate solid electrolyte at wide temperature range

[J]. Solid State Ionics, 2014, 268: 110-116.

[本文引用: 6]

KWATEK K, NOWINSKI J L.

Electrical properties of LiTi2(PO4)3 and Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes containing ionic liquid

[J]. Solid State Ionics, 2017, 302: 54-60.

[本文引用: 1]

ARBI K, LAZARRAGE M G, CHEHIMI D B, et al.

Lithium mobility in Li1.2Ti1.8R0.2(PO4)3 compounds (R=Al, Ga, Sc, In) as followed by NMR and impedance spectroscopy

[J]. Chemistry of Materials, 2004, 16(2): 255-262.

[本文引用: 1]

KOSOVA N V, DEVYATKINA E T, STEPANOV A P, et al.

Lithium conductivity and lithium diffusion in NASICON-type Li1+xTi2–xAlx(PO4)3 (x=0; 0. 3) prepared by mechanical activation

[J]. Ionics, 2008, 14(4): 303-311.

[本文引用: 5]

NING Linjian, WU Yuping, FANG Shibi, et al.

Materials prepared for lithium ion batteries by mechanochemical methods

[J]. Journal of Power Sources, 2004, 133(2): 229-242.

KOSOVA N, DEVYATKINA E.

On mechanochemical preparation of materials with enhanced characteristics for lithium batteries

[J]. Solid State Ionics, 2004, 172(1/2/3/4): 181-184.

[本文引用: 2]

KOMIYA R, HAYASHI A, MORIMOTO H, et al.

Solid state lithium secondary batteries using an amorphous solid electrolyte in the system (100-x)(0.6Li2S·0.4SiS2)·xLi4SiO4 obtained by mechanochemical synthesis

[J]. Solid State Ionics, 2001, 140(1/2): 83-87.

[本文引用: 1]

MORIMOTO H, HIRUKAWA M, MATSUMOTO A, et al.

Lithium ion conductivities of NASICON-type Li1+xAlxTi2-x(PO4)3 solid electrolytes prepared from amorphous powder using a mechanochemical method

[J]. Electrochemistry, 2014, 82(10): 870-874.

[本文引用: 2]

MORIMOTO H, AWANO H, TERESHIMA J, et al.

Preparation of lithium ion conducting solid electrolyte of NASICON-type Li1+xAlxTi2-x(PO4)3 (x=0.3) obtained by using the mechanochemical method and its application as surface modification materials of LiCoO2 cathode for lithium cell

[J]. Journal of Power Sources, 2013, 240: 636-643.

[本文引用: 2]

BUCHARSKY E C, SCHELL K G, HUPFER T, et al.

Thermal properties and ionic conductivity of Li1.3Ti1.7Al0.3(PO4)3 solid electrolytes sintered by field-assisted sintering

[J]. Ionics, 2016, 22(7): 1043-1049.

[本文引用: 1]

WINAND J M, RULMONT A, TARTE E P.

New solid solutions LI(MIV)2-x(NIV)x(PO4)3 (L=Li, Na M, N=Ge, Sn, Ti, Zr, Hf) synthesized and studied by X-ray diffraction and ionic conductivity

[J]. Journal of Solid State Chemistry, 1991, 93(2): 341-349.

[本文引用: 1]

DELMAS C, NADIRI A, SOUBEYROUX J L.

The NASICON-type titanium phosphates ATi2(PO4)3 (A=Li, Na) as electrode materials

[J]. Solid State Ionics, 1988, 28/29/30: 419-423.

[本文引用: 1]

AONO H, SUGIMOTO E, SADAOKA Y, et al.

Electrical property and sinterability of LiTi2(PO4)3 mixed with lithium salt (Li3PO4 or Li3BO3)

[J]. Solid State lonics, 1991, 47: 257-264.

KOBAYASHI Y, TAKEUCHI T, TABUCHI M, et al.

Densification of LiTi2(PO4)3-based solid electrolytes by spark-plasma-sintering

[J]. Journal of Power Sources, 1999, 81: 853-858.

[本文引用: 1]

RETTENWANDER D, WELZL A, PRISTAT S, et al.

A microcontact impedance study on NASICON-type Li1+xAlxTi2-x(PO4)3 (0≤x≤0.5) single crystals

[J]. Journal of Materials Chemistry A, 2016, 4(4): 1506-1513.

[本文引用: 2]

JACKMAN S D, CUTLER R A.

Effect of microcracking on ionic conductivity in LATP

[J]. Journal of Power Sources, 2012, 218: 65-72.

[本文引用: 3]

HUPFER T, BUCHARSKY E C, SCHELL K G, et al.

Influence of the secondary phase LiTiOPO4 on the properties of Li1+xAlxTi2-x(PO4)3 (x= 0; 0.3)

[J]. Solid State Ionics, 2017, 302: 49-53.

[本文引用: 2]

HUPFER T, BUCHARSKY E C, SCHELL K G, et al.

Evolution of microstructure and its relation to ionic conductivity in Li1+xAlxTi2-x(PO4)3

[J]. Solid State Ionics, 2016, 288: 235-239.

[本文引用: 1]

WAETZIG K, ROST A, LANGKLOTZ U, et al.

An explanation of the microcrack formation in Li1.3Al0.3Ti1.7(PO4)3 ceramics

[J]. Journal of the European Ceramic Society, 2016, 36(8): 1995-2001.

[本文引用: 3]

YU Shicheng, MERTENS A, GAO X, et al.

Influence of microstructure and AlPO4 secondary-phase on the ionic conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid-state electrolyte

[J]. Functional Materials Letters, 2016, 9(5): doi: 10.1142/S1793604716500661.

[本文引用: 1]

THOKCHOM J S, KUMAR B.

The effects of crystallization parameters on the ionic conductivity of a lithium aluminum germanium phosphate glass-ceramic

[J]. Journal of Power Sources, 2010, 195(9): 2870-2876.

[本文引用: 3]

KEY B, SCHROEDER D J, INGRAM B J, et al.

Solution-based synthesis and characterization of lithium-ion conducting phosphate ceramics for lithium metal batteries

[J]. Chemistry of Materials, 2012, 24(2): 287-293.

[本文引用: 1]

WENZEL S, LEICHTWEISS T, KRUGER D.

Interphase formation on lithium solid electrolytes — An in situ approach to study interfacial reactions by photoelectron spectroscopy

[J]. Solid State Ionics, 2015, 278: 98-105.

[本文引用: 1]

KIM H S, OH Y, KANG K H, et al.

Characterization of sputter-deposited LiCoO2 thin film grown on NASICON-type electrolyte for application in all-solid-state rechargeable lithium battery

[J]. ACS Applied Materials & Interfaces, 2017, 9 (19): 16063-16070.

[本文引用: 4]

OHTA S, SEKI J, YAGI Y, et al.

Co-sinterable lithium garnet-type oxide electrolyte with cathode for all-solid-state lithium ion battery

[J]. Journal of Power Sources, 2014, 265: 40-44.

[本文引用: 1]

GAO Zhonghui, SUN Huabin, FU Lin, et al.

Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries

[J]. Advanced Materials, 2018, 30(17): 1705702-1705728.

[本文引用: 1]

NAGATA K, NANNO T.

All solid battery with phosphate compounds made through sintering process

[J]. Journal of Power Sources, 2007, 174(2): 832-837.

[本文引用: 2]

HOFMANN P, WALTHER F, ROHNKE M, et al.

LATP and LiCoPO4 thin film preparation-Illustrating interfacial issues on the way to all-phosphate SSBs

[J]. Solid State Ionics, 2019, 342: 115054-115063.

[本文引用: 1]

GELLERT M, DASHJAV E, GRUNER D, et al.

Compatibility study of oxide and olivine cathode materials with lithium aluminum titanium phosphate

[J]. Ionics, 2018, 24(4): 1001-1006.

[本文引用: 1]

KATO T, YOSHIDA R, YAMAMOTO K, et al.

Effects of sintering temperature on interfacial structure and interfacial resistance for all-solid-state rechargeable lithium batteries

[J]. Journal of Power Sources, 2016, 325: 584-590.

[本文引用: 3]

HOSHINA K, YOSHIMA K, KOTOBUKI M, et al.

Fabrication of LiNi0.5Mn1.5O4 thin film cathode by PVP sol-gel process and its app-lication of all-solid-state lithium ion batteries using Li1+xAlxTi2-x(PO4)3 solid electrolyte

[J]. Solid State Ionics, 2012, 209/210: 30-35.

[本文引用: 1]

YU Shicheng, SCHMOHL S, LIU Zigeng, et al.

Insights into a layered hybrid solid electrolyte and its application in long lifespan high-voltage all-solid-state lithium batteries

[J]. Journal of Materials Chemistry A, 2019, 7(8): 3882-3894.

[本文引用: 4]

LIANG Jiayan, ZENG Xianxiang, ZHANG Xudong, et al.

Engineering Janus interfaces of ceramic electrolyte via distinct functional polymers for stable high-voltage Li-metal batteries

[J]. Journal of the American Chemical Society, 2019, 141 (23): 9165-9169.

[本文引用: 1]

LIU Wei, MILCAREK R J, FALKENSTEIN-SMITH R L, et al.

Interfacial impedance studies of multilayer structured electrolyte fabricated with solvent-casted PEO10-LiN(CF3SO2)2 and ceramic Li1.3Al0.3Ti1.7(PO4)3 and its application in all-solid-state lithium ion batteries

[J]. Journal of Electrochemical Energy Conversion and Storage, 2016, 13(2): doi: 10.1115/1.4035294.

[本文引用: 1]

LIU Yulong, SUN Qian, ZHAO Yang, et al.

Stabilizing the interface of NASICON solid electrolyte against Li metal with atomic layer deposition

[J]. ACS Applied Materials & Interfaces, 2018, 10 (37): 31240-31248.

[本文引用: 5]

HARTMANN P, LEICHTWEISS T, BUSHE M R, et al.

Degradation of NASICON-type materials in contact with lithium metal: Formation of mixed conducting interphases (MCI) on solid electrolytes

[J]. Journal of Physical Chemistry C, 2013, 117(41): 21064-21074.

[本文引用: 3]

HAO Xiaoge, ZHAO Qiang, SU Shiming, et al.

Constructing multifunctional interphase between Li1.4Al0.4Ti1.6(PO4)3 and Li metal by magnetron sputtering for highly stable solid‐state lithium metal batteries

[J]. Advanced Energy Materials, 2019, 9(34): 1901604-1901611.

[本文引用: 2]

BAI Hainan, HU Jiulin, DUAN Yusen, et al.

Surface modification of Li1.3Al0.3Ti1.7(PO4)3 ceramic electrolyte by Al2O3-doped ZnO coating to enable dendrites-free all-solid-state lithium-metal batteries

[J]. Ceramics International, 2019, 45(12): 14663-14668.

CHENG Qian, LI Aijun, LI Na, et al.

Stabilizing solid electrolyte-anode interface in Li-metal batteries by boron nitride-based nanocomposite coating

[J]. Joule, 2019, 3(6): 1510-1522.

[本文引用: 2]

ZHOU Weidong, WANG Shaofei, LI Yutao, et al.

Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte

[J]. Journal of the American Chemical Society, 2016, 138(30): 9385-9388.

[本文引用: 2]

/