储能科学与技术, 2020, 9(5): 1370-1382 doi: 10.19799/j.cnki.2095-4239.2020.0180

钠离子电池技术专刊

基于无机钠离子导体的固态钠电池研究进展

彭林峰,1,2, 贾欢欢1,3, 丁庆4, 赵宇明4, 谢佳,1, 程时杰1

1.华中科技大学电气与电子工程学院

2.华中科技大学物理学院

3.华中科技大学材料科学与工程学院,湖北 武汉 430000

4.深圳供电局有限公司,广东 深圳 518000

Research progress of solid-state sodium batteries using inorganic sodium ion conductors

PENG Linfeng,1,2, JIA Huanhuan1,3, DING Qing4, ZHAO Yuming4, XIE Jia,1, CHENG Shijie1

1.School of Electrical and Electronic Engineering, Huazhong University of Science and Technology

2.School of Physics, Huazhong University of Science and Technology

3.School of Materials science and Engineering, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China

4.Shenzhen Power Supply Bureau Co. Ltd. , Shenzhen 518000, Guangdong, China

通讯作者: 谢佳,教授,主要研究方向为电化学储能材料与器件、新型二次电池储能体系,E-mail:xiejia@hust.edu.cn

第一联系人: 贾欢欢(1991—),女,博士研究生,主要研究方向为固态电池与固态电解质,E-mail:jiahh@hust.edu.cn

收稿日期: 2020-05-17   修回日期: 2020-06-28   网络出版日期: 2020-09-08

基金资助: 国家重点研发计划.  2018YFB0905300.  2018YFB0905305
深圳供电局有限公司“面向电力储能的磷酸铁锂电池系统经济性分析及关键技术研究”项目.  090000KK52190063
国家自然科学基金.  U1966214.  21975087.  51902116

Received: 2020-05-17   Revised: 2020-06-28   Online: 2020-09-08

作者简介 About authors

彭林峰(1989—),男,博士研究生,主要研究方向为固态电池与固态电解质,E-mail:511574845@qq.com; E-mail:511574845@qq.com

摘要

锂离子电池的迅速发展导致锂价格上涨,另外,锂资源地壳储量低且分布不均,引起了人们对锂离子电池替代品的研究。钠资源丰富且与锂有相似的化学性质,使得钠离子电池受到广泛关注。基于不可燃无机固态电解质的固态钠电池,兼具高安全和低成本的优势,成为规模化储能领域非常有前景的储能器件。经过不懈努力,适用于固态钠电池的电解质已经被陆续开发,包括常见的β-Al2O3、NASICON型、硫化物型固态电解质以及新型富钠反钙钛矿和复合氢化物等。这些钠离子固态电解质经过合成条件优化、元素取代或置换、结构调控等手段,室温离子电导率可达10-3 S/cm以上,已经完全可满足实用需求。但是,固态钠电池的实际应用依然受到较大挑战,主要是固态电池中电解质与正负极材料间的化学、电化学相容性差,以及固-固界面接触问题。本文通过梳理近些年与固态钠电池相关的研究,总结了不同类型固态电解质应用到固态钠电池过程中遇到的机遇和挑战,以及相应解决策略,同时讨论了固态钠电池未来可能的发展方向和趋势。总的来说,主要通过引入离子液体或聚合物、多孔结构设计、电解质包覆,以及复合正极设计等方式,提升固态钠电池电化学稳定性。

关键词: 固态钠电池 ; 固态电解质 ; 离子电导率 ; 电化学稳定性 ; 固-固界面

Abstract

The surging market of lithium-ion batteries has pushed up the price of lithium. Meanwhile, the lithium resources in the Earth's crust are scarce and unevenly distributed. Therefore, it is highly desirable to pursue alternatives to lithium-ion batteries. Sodium-ion batteries have attracted significant attention due to the abundant sodium resources and because sodium has similar chemical properties to lithium. Moreover, solid-state sodium batteries based on non-combustible inorganic solid electrolytes, which combine the advantages of high safety and low cost, are becoming promising energy storage devices in the field of large-scale energy storage. With considerable effort, electrolytes suitable for solid-state sodium batteries have been developed, including common β-Al2O3, NASICON-type, and sulfide solid electrolytes, as well as novel sodium-rich anti-perovskite and composite hydrides. The ionic conductivity of these solid electrolytes at ambient temperature can be enhanced to over 10-3 S/cm by optimizing the synthetic conditions, element substitution, and structural manipulation approaches, making them fully capable of meeting practical requirements. However, the practical application of solid-state sodium batteries still faces challenges from the poor chemical or electrochemical compatibility between the electrolyte and cathode/anode materials and an inferior solid-solid interfacial contact. Here we summarize the opportunities and challenges encountered in the application of different types of solid electrolytes for solid-state sodium batteries and their corresponding solutions, then we discuss the possible development directions and trends of solid-state sodium batteries in the future.

Keywords: solid-state sodium battery ; solid electrolytes ; ionic conductivity ; electrochemical stability ; solid-solid interface

PDF (6530KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

彭林峰, 贾欢欢, 丁庆, 赵宇明, 谢佳, 程时杰. 基于无机钠离子导体的固态钠电池研究进展. 储能科学与技术[J], 2020, 9(5): 1370-1382 doi:10.19799/j.cnki.2095-4239.2020.0180

PENG Linfeng. Research progress of solid-state sodium batteries using inorganic sodium ion conductors. Energy Storage Science and Technology[J], 2020, 9(5): 1370-1382 doi:10.19799/j.cnki.2095-4239.2020.0180

锂离子电池能量密度大、设计轻便、循环寿命长,已广泛应用于手机、笔记本、电动车、电动汽车等领域[1-2]。然而锂资源的储量有限,且在地球上分布不均,这限制了其在大规模储能领域的应用[3-4]。与锂元素相比,钠元素在地壳中的储量丰富,海水中也含有大量的钠;此外,钠的电化学势为-2.71 V(相对于标准氢电极),仅比锂高0.3 V,因此钠/钠离子电池是替代锂/锂离子电池的理想选择[4-5]。以-Al2O3作为固态电解质的“斑马”(ZEBRA)电池和高温Na-S电池是最早研究的钠电池体系,其中高温Na-S电池已经商业化并应用于固定储能系统,在电能储存方面发挥着重要的作用[6-8]。然而这些钠电池体系的能量密度低,工作温度高(约为300 ℃),这不仅会影响电池的能效,还存在着一定的安全隐患[6]。因此发展中低温且具有高安全性的固态钠电池意义重大[1, 9-10]

近几十年以来,β-Al2O3、NASICON型固态电解质、硫化物固态电解质、反钙钛矿固态电解质和复合氢化物型固态电解质等无机钠离子固态电解质发展迅速,许多电解质的室温离子电导率可达到10-3 S/cm的水平,对固态钠离子电池的发展起到了很大的推动作用[11-15]。虽然固态电解质(SEs)的离子电导率已经可以满足全电池的组装要求,但制备工艺,化学、电化学稳定性等方面有很多问题亟待解决。例如,β-Al2O3和NASICON型固态电解质的界面阻抗大,室温离子电导率较低;硫化物固态电解质的电压窗口窄,对金属钠稳定性差[16-17]。另一方面,电池全固态化将面临由于固-固接触所带来的一系列的界面问题[18-20]。研究者们通过提高离子电导率、固态电池组装工艺设计、改善固-固界面等方法制备了许多性能不错的中低温固态钠电池。本文将分别对以β-Al2O3、NASICON型固态电解质、硫化物固态电解质及其他新型无机电解质的固态电池的研究进展做一个概述,为全固态电池的进一步发展提供思路。

1 基于氧化物钠离子固态电解质构筑固态电池

1.1 基于β-Al2O3固态电解质的固态钠电池

β-Al2O3β相和β˝相两种晶体结构,其中β˝-Al2O3的钠离子电导率较高,室温下可达2×10-3 S/cm,300 ℃下可达0.2~0.4 S/cm,是最早发现的快离子导体之一[20-21]。目前,采用放电等离子烧结技术(SPS)制备的β˝-Al2O3离子电导率最高[22],室温下为1.9×10-2 S/cm。β˝-Al2O3对金属钠非常稳定,电化学窗口较宽[17]。传统的以β˝-Al2O3作为固态电解质的固态钠电池主要有ZEBRA电池和高温Na-S电池两个体系,其运行温度一般在300 ℃左右,这不仅增加了电池的运营维护成本,也增加了安全隐患[6-8, 10, 23]。由于β-Al2O3的室温离子电导率较低、晶界阻抗大、亲钠性差,因此以其作为固态电解质直接组装的固态电池无法在较低的温度下工作。为了降低β-Al2O3基电池的工作温度,一方面需要提高β-Al2O3电解质的室温离子电导率,另一方面需要改善电解质与电极材料的固-固接触界面[24]

β-Al2O3薄膜化,然后与凝胶材料组合,可以改善电解质与电极之间界面接触,提升电池性能。Zhao等[25]β˝-Al2O3制成100 μm厚的薄膜,并制备凝胶状的复合正极以增加其与电解质之间的界面接触,减小界面阻抗,以此组装的电池可以室温下运行。Lei等[26]则利用静电纺丝技术将β˝-Al2O3制成纳米线组成的多孔薄膜,然后在表面包覆PVDF-HFP制成凝胶聚合物电解质,改善正负极与电解质界面,增加固态钠电池循环稳定性。除此之外,离子液体和液体电解质可以作为界面润湿剂添加到固态电池中,改善固-固材料界面接触。如图1(a)~(c)所示,Liu等[27]在复合正极中加入少量离子液体制作了牙膏状的复合正极,改善了正极材料、导电剂与β˝-Al2O3的界面接触,组装的电池在70 ℃下稳定循环10000圈,且在室温条件下也表现出良好的循环稳定性。Kim等[28]在正负极两侧与β˝-Al2O3电解质层间加入电解液润湿界面,得到的电池在容量发挥和循环稳定性方面较相应液态电池表现出明显的优势。Chi等[29]从正极材料方面入手,设计有机电极材料芘-4, 5, 9, 10-四酮(PTO),与导电剂和PEO制备复合有机正极以改善正极与电解质的界面接触;同时,在金属钠负极与β˝-Al2O3之间引入一层Sn薄膜,增加了电解质的亲钠性,减小了界面阻抗[图1(d)~(e)]。与使用电解液相比[图1(f)],这样设计的全固态电池,可以在60 ℃条件下展现出更好的容量发挥和循环稳定性。通过脉冲激光沉积等技术,在电解质表面原位沉积正极,也是改善正极与电解质界面接触不错的选择[30]。此外,如图1(g)~(i)所示,采用致密层与多孔层复合的β˝-Al2O3双层电解质,应用到Na-NiCl2电池中,熔融态的钠渗透至多孔层,增加负极与电解质有效接触面积,提升电池循环性能[31]。对β˝-Al2O3精细抛光后再进行热处理,则可以消除表面氢氧根基团和碳基污染物,极大地改善β˝-Al2O3与Na负极的界面接触[32]

图1

图1   (a) 传统烧结方法和一种新的制备方法得到的正极和电解质界面的示意图;(b) 复合正极/电解质界面截面图以及(c) Na|β˝-Al2O3|Na0.66Ni0.33Mn0.67O2-IL电池的长循环性能;(d) Na-Sn||β-Al2O3|PTO-PEO电池示意图;(e) 150 ℃时,纯的β-Al2O3Sn修饰的|β-Al2O3样片上熔融的金属钠的润湿性行为示意图;(f) Na-Sn|β-Al2O3|PTO-PEO固态电池的循环稳定性;(g) 双层|β-Al2O3固态电解质组装的Na-NiCl2电池的示意图;(h) 双层BASE结构的SEM图;(i) Na-NiCl2电池的长循环测试

Fig.1   (a) schematic diagrams of a conventional sintering type and the designed new type solid-state battery based on aninorganic ceramic electrolyte; (b) SEM of the cross section of the interface between cathode and electrolyte; (c) long-termcycling performance of Na|β˝-Al2O3|Na0.66Ni0.33Mn0.67O2-IL cell at 6 C rate[27]; (d) schematic of Na-Sn|β-Al2O3|PTO-PEO ASSMB structure; (e) schematics and optical images show the different wetting behavior of molten Na on bare and Sn-coated BASE at 150 °C; (f) cycling stability of Na-Sn|β-Al2O3|PTO-PEO ASSMB[29]; (g) a schematic view and of the Na-NiCl2battery with bi-layer BASE; (h) back SEM scattering images for fracture surfaces of double-layer BASE; (i) long-termcycling test for Na-NiCl cells.[31] The BASE represents β-Al2O3 solid electrolyte


1.2 基于NASICON型固态电解质的固态钠电池

NASICON是钠超离子导体的简称,最典型的分子式为Na3Zr2Si2PO12(NZSP),被认为是最具潜力的钠离子固态电解质材料之一,但其室温离子电导率较低,且这类电解质的晶界阻抗较大,与金属钠负极接触时,Na倾向于优先沿着晶界生长从而形成钠枝晶[33]。因此提高其室温离子电导率,降低晶界阻抗是非常重要的。此外,通过巧妙的界面设计构筑良好的正负极界面,减小电解质与电极材料之间的阻抗也有助于构建循环稳定性较好的全固态电池。

用SPS方法可以制备一体化的全固态电池,能够有效消除晶界阻抗,有助于固-固界面的构筑[34]。通过优化合成工艺,碱土金属、稀土等离子掺杂可以提高室温离子电导率,提高烧结致密度,增加组装的全固态电池的循环稳定性[35-38]

传统的固态电池通过高温烧结的方法消除晶界阻抗,促进电解质-正极材料的接触,且大多数需要在较高的温度下工作。为了降低工作温度、优化电解质与正极材料之间的界面,研究者们通过优化制作工艺,在复合正极制备时加入少量液体或聚合物层等方法来促进离子和电子的传导,降低界面阻抗[33, 39-41]。其中,如图2(a)~(b)所示,Zhang等在正极与固态电解质界面添加少量离子液体(IL),组装的固态电池在室温条件下10 C倍率可循环10000圈。Kehne等[37]利用脉冲激光沉积(PLD)技术在电解质表面原位沉积NaxCoO2正极薄膜,极大地改善电解质与正极的界面接触。最近,Lan将Na3V2P3O12(NVP)正极材料的前驱体溶液渗透到固态电解质层孔隙中[图2(c)],原位生成活性物质-固态电解质复合正极,优化了电解质与活性物质界面结构,改善材料接触及循环过程中的体积变化,组装的全固态电池室温下即展现出优异的倍率性能[图2(d)]与循环稳定性[图2(e)][42]

图2

图2   (a) 正极用离子液体(IL)修饰的Na|SEs|NVP-IL固态电池的示意图和(b)相应的固态电池在10 C的倍率下循环10000圈的长循环性能;(c) 用两种不同的方法制备的电极的微观结构示意图;(d)(e)分别为NVP-NZSP-Na固态电池在25 ℃下的倍率性能和循环性能;(f) 基于0.1Ca-NZSP固态电解质构筑三维的金属钠负极的全固态电池示意图及(g)该电池在不同电流密度下的循环性能

Fig. 2   (a) schematic representation of the NVP/IL/SE/Na solid-state batteries and (b) cycling performance of the Na|SEs|NVP-IL solid-state battery at room temperature with a current rate of 10 C for 10000 cycles[39]; (c) schematics of typical electrode microstructure by two different processing routes; (d) performance of a cell operating with different current densities and (e) discharge capacity and Coulombic efficiency for each cycle of NVP-NZSP-Na cells operating at 25 °C[42]; (f) Schematic of the full SSSB with 3D sodium metal anode based on trilayer 0.1Ca-NZSP electrolyte and (g) the cycling proflie of the solid-state battery at different current densities[36]


与基于β-Al2O3组装的全固态电池一样,NASICON型电解质同样存在“亲钠性”差的问题。Zhou等[33]提出将表面放置金属钠的NASICON层在一定温度条件下原位加热或者构筑聚合物层/NASICON/聚合物层三明治结构可以有效地改善金属钠与NASICON电解质层的亲和性,使金属钠在电解质表面均匀沉积而避免枝晶形成,进而提高全电池的循环稳定性和安全性。Matios等[43]通过CVD方法在Na3Zr2Si2PO12表面生长了一层类石墨烯界面层,构筑了大量分布式缺陷网络,使得Na可以在电解质和电极界面均匀地沉积而不是沿着晶界生长,从而抑制了Na枝晶的生长,减小了界面阻抗。Lu等[36]构建了一种由致密的电解质层和多孔的亲钠层组成的一体化的结构,大大降低了电解质与钠负极之间的接触电阻,同时在正极侧添加少量聚合物电解质改善正极与电解质界面接触,组装的全电池在室温下表现出良好的循环稳定性,如图2(f)~(g)所示。此外,在电池设计时,使用结构相似的正负极和电解质材料也有利于提高固态电池性能[44-45]

综上所述,不论是β-Al2O3还是NASICON型固态电解质,对于氧化物钠离子固态电解质来说,在电池性能优化方面具有相似的策略。首先,氧化物电解质晶界阻抗较大,需要高温处理提升材料致密度,减小晶界阻抗;其次,在电极材料与电解质界面接触改善方面,常用的策略包括薄膜化、液体润湿或添加聚合物、原位沉积、多孔结构设计等。表1概括了基于氧化物钠离子固态电解质的固态电池性能。目前室温条件下,通过NASICON多孔层中原位生成正极活性物质,组成复合正极,电池组装过程中不添加任何有机成分或液体,组装的全固态电池室温下可稳定运行100圈左右。而想要获得更稳定的循环性能,则需要通过上述相应策略进一步改善电极材料与电解质界面接触。其中,最有效的是在电极/电解质界面引入少量离子液体,可使固态电池室温循环性能提升至10000圈。由此可见,氧化物基固态钠电池全固态化进程依然任重道远,从实际应用角度出发,或许从准固态逐渐向全固态过渡,是更合理的选择。

表1   基于氧化物钠离子固态电解质的中低温固态电池总结

Table 1  Summary of solid-state batteries based on oxide sodium solid electrolytes

固态电池循环圈数容量保持温度参考文献
Na|β˝-Al2O3|NaTi3(PO4)350圈(0.1 C)100 mA·h/gRT[25]
Na|β˝-Al2O3-PVDF-HFP|Na3V2(PO4)31000圈(1 C)90 mA·h/gRT[26]
Na|β˝-Al2O3|Na0.66Ni0.33Mn0.67O2-IL10000圈(6 C)90%70 ℃[27]
Na|LE-β˝-Al2O3-LE|S-C104圈(1/64 C)521 mA·h/gRT[28]
Na-Sn|β˝-Al2O3|PTO-PEO-C50圈(0.1 C)80%60 ℃[29]
Na|β˝-Al2O3|NiCl2350圈(20~30 mA)355 W·h/kg190 ℃[31]
Na|CPMEA/Na3Zr2Si2PO12|NaTi2(PO4)370圈(0.2 C)100 mA·h/g65 ℃[33]
Na|Na3.1Zr1.95Mg0.05Si2PO12|Na0.9Cu0.22Fe0.3Mn0.48O2100圈(0.5 C)57.9 mA·h/gRT[35]
Na|0.1Ca-NZSP|Na3V2(PO4)3450(1 C)94.9 mA·h/g25 ℃[36]
Na|IL/Na3.3Zr1.7La0.3Si2PO12|Na3V2(PO4)310000圈(10 C)90 mA·h/gRT[39]
Na|SN-Na3Zr2Si2PO12|Na3V2(PO4)350圈(20 mA/g)62.23 mA·h/gRT[41]
Na|Na3.4Zr2Si2.4P0.6O12|Na3V2(PO4)3100圈(0.6 C)96.5 mA·h/g25 ℃[42]
NVPF|NYSO-PEO-SSE| Na3V2(PO4)350圈(1 C)89%60 ℃[45]
Na|Na3Zr2Si2PO12|Na2MnFe(CN)6200圈(0.5 C)89.2%60 ℃[46]
Na|CPE-NZMSPO|Na3V2(PO4)3120圈(0.1 C)106.1 mA·h/g80 ℃[47]

新窗口打开| 下载CSV


2 基于硫化物固态电解质(SSEs)的固态钠电池

常见的硫化物钠离子固态电解质包括Na3PS4[48-49]、Na3SbS4[50-51]以及近期发展的Na11Sn2PS12[52-53]和Na4Sn0.67Si0.33S4系列[54-56]。与氧化物相比,硫化物钠离子固态电解质通常拥有更高的离子电导率,这与硫化物电解质材料本征特性有关。硫化物材料质地较软,通过简单冷压即可实现较高致密度和较低晶界阻抗[57-58]。目前报道拥有最高离子电导率的硫化物钠离子固态电解质为Na3SbS4中引入一定量钨(W)[59-60],得到的Na2.9Sb0.9W0.1S4室温离子电导率最高可达(4.1±0.8)×10-2 S/cm。但是,硫化物钠离子固态电解质的电化学稳定性较差。以研究最为成熟和广泛的Na3PS4为例 [17, 61],虽然通过循环伏安法测得的Na3PS4的电化学窗口为0.5~5 V[48],但实验表明Na3PS4对Na负极并不稳定。Janek等[17]仔细研究了Na3PS4对于Na金属的稳定性,通过XPS对表面沉积钠金属的Na3PS4进行了分析,发现沉积Na金属后在Na3PS4与Na负极之间生成了一个由硫化钠和磷化钠组成的界面层,其中硫化物呈现电子绝缘性,而Na3P的电子电导较高,这对于全固态电池的组装是不利的。理论计算也表明在硫化物钠离子固态电解质中Na3PS4的电化学窗口约为1.55~2.25 V[16]。较窄的电化学窗口使硫化物电解质与正负极匹配时,在电池运行过程中容易发生氧化还原分解,导致电池性能快速衰减。为了提高电解质与电极材料相容性,改善以SSEs组装的全固态钠电池的性能,人们从正负极界面设计及电解质改性等角度着手,做了很多的工作。

2.1 负极-电解质界面改性

结合理论计算及钠沉积测试表明,使用Na-Sn合金可以提高Na3PS4与负极界面的稳定性[16]。通过对电解质进行掺杂改性也可以增加硫化物电解质与钠负极之间的稳定性,其中Cl掺杂被证明是一个行之有效的方法。研究表明通过少量的Cl掺杂可以在Na金属与Na3PS4之间形成一层电子绝缘离子导电的界面,提高对Na金属的稳定性[62-63]。Na3PS4的电化学窗口是硫化物钠离子固态电解质中较高的,因此在其他硫化物钠离子固态电解质组装全固态电池时,常常使用Na3PS4作为负极保护层形成双层电解质来提高负极稳定性[64-65]

除此之外,在硫化物电解质与钠负极之间添加稳定界面层,也是非常常见的手段。Hu等[66]系统地研究了Na3SbS4与Na负极之间的界面反应,如图3(a)~(b)所示,通过在Na金属与Na3SbS4电解质层之间修饰一层聚合物膜,提高其对金属钠的稳定性。Zhang等[67]使用分子层沉积(MLD)技术在金属钠的表面修饰一层新型铝基有机无机复合薄膜,稳定Na与Na3SbS4的界面,结果表明该复合层可以有效缓解Na3SbS4的分解,抑制钠枝晶的生长,从而提高室温全固态钠电池的性能。Tian等[68]巧妙地运用了Na3SbS4的空气稳定性,结合第一性原理计算,寻找与金属负极化学性稳定的钝化层产物,逆向预测与金属负极发生有益钝化反应的固态电解质。如图3(c)~(d)所示,通过适度地暴露空气后在Na3SbS4的表面生成了一层水合物保护层,其与钠金属反应后产生包含NaH、Na2O等只允许钠离子传导的反应钝化层,提高钠金属与固态电解质的界面稳定性。

图3

图3   (a) Na|Na3SbS4|Na(b) Na-CPEO|Na3SbS4|CPEO-Na对称电池的示意图以及循环前后的照片;未经处理和经过表面水和作用处理的Na3SbS4电解质组装的Na|Na3SbS4|Na对称电池(c) 循环前后Na-电解质界面的示意图和(d) 0.1 mA/cm2电流密度下的充放电曲线

Fig.3   (a) schematic and photos of the Na/Na3SbS4/Na symmetric cell and (b) the Na-CPEO|Na3SbS4|CPEO-Na symmetric cell before and after cycling[66]; (c) schematic illustration of solid electrolyte-Na metal interface before and after electrochemical cycling[68]; (d) galvanostatic cycling of Na|Na3SbS4|Na symmetric cells with and without surface hydration pretreatment at a current density of 0.1 mA/cm2[68]


2.2 复合正极设计

复合正极一般包括固态电解质、导电剂和活性物质三种材料,在进行正极设计时,保证活性材料的均匀分布,从而达到离子和电子的均匀传导非常重要。通过液相合成法合成硫化物钠离子固态电解质对正极材料进行包覆或将材料纳米化可以改善电极材料与其他组分的界面接触,增强电池的倍率性能和循环稳定性[51, 69-72]。如图4(a)所示,Yue等通过液相合成法用Na3PS4对正极材料Mo6S8进行包覆,组装的全固态电池在60 ℃,60 mA/g的电流密度下可以稳定循环500圈[图4(b)]。Fan等[72]通过熔融-退火的方法,原位合成纳米化Na2S-Na3PS4-CMK-3复合正极来改善正极中的离子和电子传导。

图4

图4   (a) 用电解质对Mo6S8正极包覆的全固态钠离子电池结构示意图;(b) 包覆与没有包覆的Mo6S8正极组装的全固态电池在60 mA/g60 °C下的长循环性能;(c) Na4C6O6|Na3PS4|Na15Sn4全固态电池在0.2 C60 °C下的长循环性能;(d) PTO-NR复合正极循环前和200圈后的横截面的SEM图;(e) Na15Sn4 |Na3PS4| PTO-NR全固态电池在0.3 C下的循环曲线

Fig.4   (a) schematic diagram of a bulk-type ASIB enabled by a SE-coated Mo6S8 cathode[70]; (b) cycling performances and coulombic efficiencies of the Mo6S8 and SE-coated Mo6S8 cathodes in ASIBs at 60 mA/g at 60 °C[70]; (c) capacity and coulombic efficiency of a Na4C6O6|Na3PS4 |Na15Sn4 ASSSB versus cycle number at 0.2 C at 60 °C[76]; (d) cross-sectional SEM images of FIB-milled composite cathodes before cycling and after 200 cycles[75]; (e) capacity and coulombic efficiency versus cycle number for Na15Sn4 |Na3PS4| PTO-NR cell at 0.3 C[75]


除了通过包覆来改善正极/电解质界面,寻找和硫化物固态电解质兼容性较好的电极材料也是改善正极界面的一个方向。Nagata等[73]合成了一系列无定形的Na0.7CoO2-NaxMOy(M=N、S、P、B、或C)复合电极材料,发现这种层状的过渡金属氧化物和钠的含氧酸盐复合的无定形化材料可以有效提高电极材料的放电比容量。同时,立方相的Na2TiS3也被证明与硫化物电解质有很好的兼容性,得到室温循环稳定的电池[74]。Yao课题组[75-76]先后报道了高容量的醌基有机正极材料Na4C6O6和芘-4, 5, 9, 10-四酮(PTO)。这些材料与Na3PS4电解质表现出良好的化学和电化学兼容性,以此为基础制备的全固态钠电池表现出非常高的比容量,其稳定性也非常突出,分别在60 ℃下稳定循环了400圈和500圈[图4(c)~(e)]。

总的来说,与氧化物固态电解质硬而脆的特性不同,硫化物固态电解质质地较软,有良好的可变形性,与电极材料在一定压力下可实现较好的界面接触,因此液体润湿剂改善界面的策略在硫化物基固态钠电池中应用较少。在硫化物固态电池中,主要通过在正极材料表面液相包覆电解质层,以改善活性物质与电解质接触面积,提升全电池电化学性能。另一方面,由于硫化物材料电化学不稳定性,需要匹配相容性较好的正极材料,以及在电解质负极侧添加稳定保护层,以防止电解质在电池运行过程中氧化还原分解,影响电池性能。表2为基于硫化物钠离子固态电解质的全固态电池总结。可以看出,稳定的电解质包覆或设计相容性较好的有机正极材料,能显著改善硫化物基固态钠电池的循环稳定性,但是大多需要在60 ℃条件下实现,可能与液相法包覆会降低固态电解质离子电导率有关。不过已经有不少研究者正在通过工艺改进努力改善液相法合成硫化物电解质的离子电导率,相信在不久的将来,硫化物固态钠电池室温性能会得到进一步提升。

表2   基于硫化物钠离子固态电解质的全固态电池总结

Table 2  Summary of solid-state batteries based on chalcogenides sodium solid electrolytes

固态电池循环圈数容量保持温度参考文献
Na|t-Na2.9375PS3.9375Cl0.0625|TiS210圈(0.01 C)80 mA·h/g25 ℃[63]
Na|Na2.9PS3.95Se0.05|Fe1-xS@Na2.9PS3.95Se0.0550圈(100 mA/g)494.3 mA·h/gRT[69]
Na-Sn-C| Na3PS4|SE-coated Mo6S8500圈(60 mA/g)52 mA·h/g60 ℃[70]
Na-Sn-C|Na3PS4|Na2S-NPS-C50圈(50 mA/g)650 mA·h/g60 ℃[72]
Na2+2xFe2-x(SO4)3|Na3.1Sn0.1P0.9S4| Na2Ti3O7100圈(2 C)109 mA·h/g80 ℃[74]
Na15Sn4|Na3PS4|PTO500圈(0.3 C)89%60 ℃[75]
Na15Sn4|Na3PS4|Na4C6O6400圈(0.2 C)68%60 ℃[76]
Na|LS-Na3SbS3.75Se0.25|FeS2300圈(0.5 A/g)140.6 mA·h/gRT[77]
Na|Na3PS4|FeS2100圈(60 mA/g)287 mA·h/g25 ℃[78]
Na2+2δFe2-δ(SO4)3|Na3.1Sn0.1P0.9S4|Na2Ti3O7100(2 C)109 mA·h/g80 ℃[79]

新窗口打开| 下载CSV


3 基于其他新型钠离子固态电解质的固态电池

随着固态钠电池的快速发展,几种新型钠离子固态电解质也应运而生,接下来主要介绍反钙钛矿型和复合氢化物两种。

反钙钛矿型钠离子固态电解质的研究近几年才开始,目前主要包括Na3OX(X=Cl、Br)[80-81]和Na3OBH4[82]两类。其中Na3OBH4由于较高的结构容忍度和BH4的旋转特性,展现出超高离子电导率,室温下可达4.4×10-3 S/cm。与其他氧化物钠离子电解质类似,反钙钛矿类材料内部晶界阻抗较大,另外,该类材料本身极易吸湿的特性,导致其在全固态电池中的应用相对较少。Braga等[83-85]利用与Na3OCl相同的前驱体材料,在引入去离子水的情况下,将原材料液相混合之后进行一系列热处理,得到无定形玻璃态电解质Na3-xHxOCl (0<x<1),该玻璃态电解质25 ℃时的钠离子电导率可达到10-2 S/cm,以Na3-xHxOCl作为固态电解质组装的Na|二茂铁电池在室温下表现出不错的循环稳定性[图5(a)][85]。与传统氧化物固态电解质不同,反钙钛矿型钠离子固态电解质合成温度低、易于加工处理,且拥有较高的离子电导率,如果处理好材料固-固界面接触问题,该材料在固态电池方面将有非常好的应用前景。

图5

图5   (a) Na-二茂铁电池充放电电压与时间关系图;(b) Na|Na2B10H10-3Na2B12H12|TiS2电池的充放电曲线;(c) Na|Na2(B12H12)0.5(B10H10)0.5|NaCrO2电池的长循环曲线;(d) Na|Na3NH2B12H12|TiS2电池的充放电曲线

Fig.5   (a) discharge/charge voltages versus time for a Na-ferrocene cell[85]; (b) discharge/charge profiles of Na|Na2B10H10-3Na2B12H12|TiS2[87]; (c) long term cycling of a Na|Na2(B12H12)0.5(B10H10)0.5|NaCrO2 cell[96]; (d) discharge/charge profiles of Na|Na3NH2B12H12|TiS2[102]


Orimo课题组[86-87]最先开发了钠基复合氢化物固态电解质并将其组装到全固态钠电池中研究其电化学性能。这类材料在相转变温度以上拥有较高离子电导率,但是该材料最大的缺陷是相转变温度较高[88-89]。通过化学修饰、尺寸调控和不同阴离子混合等方式的处理,有些材料的相转变温度已降到了室温甚至消除了相转变,这大大方便了其在全固态电池中的应用[90-95]。但是这类材料的电化学窗口普遍较窄,因此只有少数运用在了全电池组装中[96-98]。将Na2B10H10与Na2B12H12以不同摩尔比混合后机械球磨,得到的复合物材料无相转变且离子电导率较高,其中以摩尔比1:3混合后材料室温离子电导率10-4 S/cm以上,电化学稳定窗口在5 V以上,如图5(b)所示,以其作为固态电解质组装的Na/TiS2全固态钠电池在室温下以C/50的倍率进行充放电测试时其放电比容量可以达到250 mA·h/g[87]。Na2(B12H12)0.5(B10H10)0.5具有室温离子电导率高、热稳定性好及与金属钠相容性较好等优点[99],使其在室温固态钠电池方面有很好的应用前景[100]图5(c)为用其作电解质组装的全固态电池,室温下C/5的倍率条件下循环250圈后,容量保持率在85%左右[96]。但是,该电解质电化学稳定窗口只有3 V左右,不能与高电压正极匹配,使该材料在高能量密度应用方面受到一定限制[96-97]。同样受到电化学稳定窗口限制的还有最近报道的钠基复合氢化物Nax+2y(B11H14)x(B12H12)y(x=1,y=2),电化学稳定窗口只有2.6 V[98]。最近,Matteo Brighi设计的Na2-x(CB11H12)x(B12H12)1-x(x=2/3)拥有较高的电化学稳定窗口(4.1 V)及更高的室温钠离子电导率(2×10-3 S/cm),但对称电池测试显示材料只对Na-Sn合金稳定,对金属钠不稳定(120 h后钠枝晶造成短路)[97, 101]。另外,Na3NH2B12H12虽然室温离子电导率不高,但是表现出非常优异的电化学稳定性和热稳定性(320 ℃),该电解质电化学稳定窗口可达10 V,如图5(d)所示其组装的全固态电池在80 ℃温度下可运行200圈以上[102]

总之,新型固态电解质以其独特的优势逐渐引起人们注意。如反钙钛矿材料,与传统氧化物固态电解质动辄1000 ℃以上的合成温度相比,其加工温度大大降低,在300 ℃以下便可成功合成并得到较高的离子电导率;复合氢化物通过降低相转变温度,使材料室温离子电导率大大提升,增加了实际应用潜能。不过,与优势相对的是各自明显的缺陷。反钙钛矿材料极易吸湿性以及较大晶界阻抗等问题亟须解决;复合氢化物复杂的合成过程和电化学不稳定性可能会阻碍其实际应用。表3为新型固态钠离子电解质在固态电池中性能总结。总的来说,新型固态电解质在钠电池中的应用相对较少,且各自性能参差不齐,其中的界面问题和材料本身的电化学稳定性等方面,未来还需要更多努力,以推动新型固态电解质在固态钠电池中的应用。

表3   钠基复合氢化物固态电池性能总结

Table 3  Summary of solid-state batteries based on Na-based complex hydride

固态电池循环圈数容量保持温度参考文献
Na|Na2B10H10-3Na2B12H12|TiS211圈(0.02 C)216 mA·h/g30 ℃[87]
Na|Na2(B12H12)0.5(B10H10)0.5| NaCrO2250圈(0.2 C)85%RT[96]
Na|Na3NH2B12H12|TiS277圈(0.1 C)77 mA·h/g80 ℃[102]

新窗口打开| 下载CSV


4 结 语

固态钠电池作为高安全、低成本储能器件,正受到人们广泛关注。但是,在电池固态化进程中,固态电解质与固体电极材料之间的界面问题,包括界面相容性和界面接触等,严重阻碍其实际应用。本文综述了无机固态电解质在固态钠电池中的研究进展,包括β-Al2O3、NASICON氧化物固态电解质,硫化物固态电解质,以及新型反钙钛矿和复合氢化物电解质。

图6为氧化物和硫化物基固态钠电池中电池性能优化的主要策略。氧化物固态电解质较硬,晶界阻抗较大,与固态电极材料接触易产生较大界面阻抗,通过设计电解质多孔结构,或在正负极/电解质界面处添加聚合物或离子液体等,可以增加电解质与电极材料紧密接触,减小界面阻抗,提升电池循环稳定性;负极侧则可添加亲钠层,增加电解质与金属钠亲和性,减小界面阻抗,促进钠负极均匀沉积。硫化物电解质较软,具有一定的可变形性,通常采用液相法对正极材料进行电解质包覆,增加活性物质与固态电解质接触面积;其次,将材料纳米化增加活性物质与电解质均匀混合,以及设计与硫化物相容性较好的正极材料,也可有效改善固态电池性能;负极方面,由于硫化物电解质的电化学不稳定性,通常与Na-Sn合金匹配或在金属钠/电解质界面引入稳定保护层,以防止电解质在电池运行中产生分解。新型钠离子固态电解质虽然均具有较大潜能,但各自缺陷也比较明显,在固态钠电池方面的应用还需要未来进一步探索。

图6

图6   氧化物和硫化物基固态钠电池主要优化策略

Fig.6   A summary of optimization strategies for oxide- and sulfide-based solid-state sodium batteries


参考文献

ZHAO Q, STALIN S, ZHAO C Z, et al.

Designing solid-state electrolytes for safe, energy-dense batteries

[J]. Nature Reviews Materials, 2020, 5: 229-252.

[本文引用: 2]

NITTA N, WU F, LEE J T, et al.

Li-ion battery materials: Present and future

[J]. Materials Today, 2015, 18(5): 252-264.

[本文引用: 1]

YABUUCHI N, KUBOTA K, DAHBI M, et al.

Research development on sodium-ion batteries

[J]. Chemical Reviews, 2014, 114(23): 11636-11682.

[本文引用: 1]

SLATER M D, KIM D, LEE E, et al.

Sodium-ion batteries

[J]. Advanced Functional Materials, 2013, 23(8): 947-958.

[本文引用: 2]

CHAYAMBUKA K, MULDER G, DANILOV D L, et al.

Sodium-ion battery materials and electrochemical properties reviewed

[J]. Advanced Energy Materials, 2018, 8(16): doi: 10.1002/aenm.201800079.

[本文引用: 1]

KUNDU D, TALAIE E, DUFFORT V, et al.

The emerging chemistry of sodium ion batteries for electrochemical energy storage

[J]. Angewandte Chemie-International Edition, 2015, 54(11): 3431-3448.

[本文引用: 3]

BONES R J, TEAGLE D A, BROOKER S D, et al.

Development of a Ni, NiCl2 positive electrode for a liquid sodium(zebra) battery cell

[J]. Journal of the Electrochemical Society, 1989, 136(5): 1274-1277.

DUSTMANN C H.

Advances in zebra batteries

[J]. Journal of Power Sources, 2004, 127(1): 85-92.

[本文引用: 2]

HU Y S.

Batteries: Getting solid

[J]. Nature Energy, 2016, 1(4): doi: 10.1038/nenergy.2016.42.

[本文引用: 1]

HUESO K B, PALOMARES V, ARMAND M, et al.

Challenges and perspectives on high and intermediate-temperature sodium batteries

[J]. Nano Research, 2017, 10(12): 4082-4114.

[本文引用: 2]

ZHANG Z Z, SHAO Y J, LOTSCH B, et al.

New horizons for inorganic solid state ion conductors

[J]. Energy & Environmental Science, 2018, 11(8): 1945-1976.

[本文引用: 1]

徐来强, 李佳阳, 刘城, .

无机钠离子电池固体电解质研究进展

[J]. 物理化学学报, 2020, 36(5): doi: 10.3866/PKU.WHXB201905013.

XU L Q, LI J Y, LIU C, et al.

Research progress in inorganic solid-state electrolytes for sodium-ion batteries

[J]. Acta Physico-Chimica Sinica, 2020, 36(5): doi: 10.3866/PKU.WHXB201905013.

陈光海, 白莹, 高永晟, .

全固态钠离子电池硫系化合物电解质

[J]. 物理化学学报, 2020, 36(5): doi: 10.3866/PKU.WHXB201905009.

CHEN G H, BAI Y, GAO Y S, et al.

Chalcogenide electrolytes for all-solid-state sodium ion batteries

[J]. Acta Physico-Chimica Sinica, 2020, 36(5): doi: 10.3866/PKU.WHXB201905009.

刘丽露, 戚兴国, 邵元骏, .

钠离子固体电解质材料研究进展

[J]. 储能科学与技术, 2017, 6(5): 961-980.

LIU L L, QI X G, SHAO Y J, et al.

Research progress on sodium ion solid-state electrolytes

[J]. Energy Storage Science and Technology, 2017, 6(5): 961-980.

ZHOU C, BAG S, THANGADURAI V, et al.

Engineering materials for progressive all-solid-state Na batteries

[J]. ACS Energy Letters, 2018, 3(9): 2181-2198.

[本文引用: 1]

TIAN Y, SHI T, RICHARDS W D, et al.

Compatibility issues between electrodes and electrolytes in solid-state batteries

[J]. Energy & Environmental Science, 2017, 10(5): 1150-1166.

[本文引用: 3]

WENZEL S, LEICHTWEISS T, WEBER D A, et al.

Interfacial reactivity benchmarking of the sodium ion conductors Na3PS4 and sodium beta-alumina for protected sodium metal anodes and sodium all-solid-state batteries

[J]. ACS Applied Materials & Interfaces, 2016, 8(41): 28216-28224.

[本文引用: 4]

TANG H, DENG Z, LIN Z, et al.

Probing solid-solid interfacial reactions in all-solid-state sodium-ion batteries with first-principles calculations

[J]. Chemistry of Materials, 2017, 30(1): 163-173.

[本文引用: 1]

HOU W R, GUO X W, SHEN X Y, et al.

Solid electrolytes and interfaces in all-solid-state sodium batteries: Progress and perspective

[J]. Nano Energy, 2018, 52: 279-291.

ZHAO C, LIU L, QI X, et al.

Solid-state sodium batteries

[J]. Advanced Energy Materials, 2018, 8(17): doi: 10.1002/aenm.201703012.

[本文引用: 2]

LU X C, XIA G G, LEMMON J P, et al.

Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives

[J]. Journal of Power Sources, 2010, 195(9): 2431-2442.

[本文引用: 1]

KOGANEI K, OYAMA T, INADA M, et al.

C-axis oriented beta''-alumina ceramics with anisotropic ionic conductivity prepared by spark plasma sintering

[J]. Solid State Ionics, 2014, 267: 22-26.

[本文引用: 1]

HUESO K B, ARMAND M, ROJO T, et al.

High temperature sodium batteries: Status, challenges and future trends

[J]. Energy & Environmental Science, 2013, 6(3): 734-749.

[本文引用: 1]

CHANG H J, LU X, BONNETT J F, et al.

Decorating β′′-alumina solid-state electrolytes with micron Pb spherical particles for improving Na wettability at lower temperatures

[J]. Journal of Materials Chemistry A, 2018, 6(40): 19703-19711.

[本文引用: 1]

ZHAO K, LIU Y, ZHANG S M, et al.

A room temperature solid-state rechargeable sodium ion cell based on a ceramic Na-beta"-Al2O3 electrolyte and NaTi2(PO4)3 cathode

[J]. Electrochemistry Communications, 2016, 69: 59-63.

[本文引用: 2]

LEI D, HE Y B, HUANG H, et al.

Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery

[J]. Nature Communications, 2019, 10: doi: 10.1038/s41467-019-11960-w.

[本文引用: 2]

LIU L L, QI X G, MA Q, et al.

Toothpaste-like electrode: A novel approach to optimize the interface for solid-state sodium-ion batteries with ultralong cycle life

[J]. ACS Applied Materials & Interfaces, 2016, 8(48): 32631-32636.

[本文引用: 3]

KIM I, PARK J Y, KIM C H, et al.

A room temperature Na/S battery using a β″-alumina solid electrolyte separator, tetraethylene glycol dimethyl ether electrolyte, and a S/C composite cathode

[J]. Journal of Power Sources, 2016, 301: 332-337.

[本文引用: 2]

CHI X W, HAO F, ZHANG J B, et al.

A high-energy quinone-based all-solid-state sodium metal battery

[J]. Nano Energy, 2019, 62: 718-724.

[本文引用: 3]

KEHNE P, GUHL C, ALFF L, et al.

The effect of calcium impurities of β″-alumina on the degradation of NaxCoO2 cathodes in all solid state sodium-ion batteries

[J]. Solid State Ionics, 2019, 341: doi: 10.1016/j.ssi.2019.115041.

[本文引用: 1]

JUNG K, CHANG H J, BONNETT J F, et al.

An advanced Na-NiCl2 battery using bi-layer(dense/micro-porous) β″-alumina solid-state electrolytes

[J]. Journal of Power Sources, 2018, 396: 297-303.

[本文引用: 3]

BAY M C, WANG M, GRISSA R, et al.

Sodium plating from Na-β″-alumina ceramics at room temperature, paving the way for fast-charging all-solid-state batteries

[J]. Advanced Energy Materials, 2020, 10(3): doi: 10.1002/aenm.201902899.

[本文引用: 1]

ZHOU W, LI Y, XIN S, et al.

Rechargeable sodium all-solid-state battery

[J]. ACS Central Science, 2017, 3(1): 52-57.

[本文引用: 4]

LALÈRE F, LERICHE J B, COURTY M, et al.

An all-solid state NASICON sodium battery operating at 200 ℃

[J]. Journal of Power Sources, 2014, 247: 975-980.

[本文引用: 1]

YANG J, WAN H L, ZHANG Z H, et al.

NASICON-structured Na3.1Zr1.95Mg0.05Si2PO12 solid electrolyte for solid-state sodium batteries

[J]. Rare Metals, 2018, 37(6): 480-487.

[本文引用: 2]

LU Y, ALONSO J A, YI Q, et al.

A high-performance monolithic solid-state sodium battery with Ca2+ doped Na3Zr2Si2PO12 electrolyte

[J]. Advanced Energy Materials, 2019, 9(28): doi: 10.1002/aenm.201901205.

[本文引用: 3]

KEHNE P, GUHL C, MA Q, et al.

Sc-substituted NASICON solid electrolyte for an all-solid-state NaxCoO2/NASICON /Na sodium model battery with stable electrochemical performance

[J]. Journal of Power Sources, 2019, 409: 86-93.

[本文引用: 1]

MA Q, TSAI C L, WEI X K, et al.

Room temperature demonstration of a sodium superionic conductor with grain conductivity in excess of 0.01 S/cm and its primary applications in symmetric battery cells

[J]. Journal of Materials Chemistry A, 2019, 7(13): 7766-7776.

[本文引用: 1]

ZHANG Z, ZHANG Q, SHI J, et al.

A self-forming composite electrolyte for solid-state sodium battery with ultralong cycle life

[J]. Advanced Energy Materials, 2017, 7(4): doi: 10.1002/aenm.201601196.

[本文引用: 3]

GAO H, XUE L, XIN S, et al.

A plastic-crystal electrolyte interphase for all-solid-state sodium batteries

[J]. Angewandte Chemie-International Edition, 2017, 56(20): 5541-5545.

RUAN Y L, GUO F, LIU J J, et al.

Optimization of Na3Zr2Si2PO12 ceramic electrolyte and interface for high performance solid-state sodium battery

[J]. Ceramics International, 2019, 45(2): 1770-1776.

[本文引用: 2]

LAN T, TSAI C L, TIETZ F, et al.

Room-temperature all-solid-state sodium batteries with robust ceramic interface between rigid electrolyte and electrode materials

[J]. Nano Energy, 2019, 65: doi: 10.1016/j.nanoen.2019.104040.

[本文引用: 3]

MATIOS E, WANG H, WANG C, et al.

Graphene regulated ceramic electrolyte for solid-state sodium metal battery with superior electrochemical stability

[J]. ACS Applied Materials & Interfaces, 2019, 11(5): 5064-5072.

[本文引用: 1]

NOI K, NAGATA Y, HAKARI T, et al.

Oxide-based composite electrolytes using Na3Zr2Si2PO12/Na3PS4 interfacial ion transfer

[J]. ACS Applied Materials & Interfaces, 2018, 10(23): 19605-19614.

[本文引用: 1]

SUN H B, GUO J Z, ZHANG Y, et al.

High-voltage all-solid-state Na-ion-based full cells enabled by all NASICON-structured materials

[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 24192-24197.

[本文引用: 2]

GAO H, XIN S, XUE L, et al.

Stabilizing a high-energy-density rechargeable sodium battery with a solid electrolyte

[J]. Chem, 2018, 4(4): 833-844.

[本文引用: 1]

ZHANG Z, ZHANG Q, REN C, et al.

A ceramic/polymer composite solid electrolyte for sodium batteries

[J]. Journal of Materials Chemistry A, 2016, 4(41): 15823-15828.

[本文引用: 1]

HAYASHI A, NOI K, SAKUDA A, et al.

Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries

[J]. Nature Communications, 2012, 3: doi: 10.1038/ncomms1843.

[本文引用: 2]

HAYASHI A, NOI K, TANIBATA N, et al.

High sodium ion conductivity of glass ceramic electrolytes with cubic Na3PS4

[J]. Journal of Power Sources, 2014, 258: 420-423.

[本文引用: 1]

WANG H, CHEN Y, HOOD Z D, et al.

An air-stable Na3SbS4 superionic conductor prepared by a rapid and economic synthetic procedure

[J]. Angewandte Chemie-International Edition, 2016, 55(30): 8551-8555.

[本文引用: 1]

BANERJEE A, PARK K H, HEO J W, et al.

Na3SbS4: A solution processable sodium superionic conductor for all-solid-state sodium-ion batteries

[J]. Angewandte Chemie-International Edition, 2016, 55(33): 9634-9638.

[本文引用: 2]

DUCHARDT M, RUSCHEWITZ U, ADAMS S, et al.

Vacancy-controlled Na+ superion conduction in Na11Sn2PS12

[J]. Angewandte Chemie-International Edition, 2018, 57(5): 1351-1355.

[本文引用: 1]

ZHANG Z, RAMOS E, LALERE F, et al.

Na11Sn2PS12: A new solid state sodium superionic conductor

[J]. Energy & Environmental Science, 2018, 11(1): 87-93.

[本文引用: 1]

JIA H H, SUN Y L, ZHANG Z R, et al.

Group 14 element based sodium chalcogenide Na4Sn0.67Si0.33S4 as structure template for exploring sodium superionic conductors

[J]. Energy Storage Materials, 2019, 23: 508-513.

[本文引用: 1]

JIA H, LIANG X, AN T, et al.

Effect of halogen doping in sodium solid electrolytes based on the Na-Sn-Si-P-S quinary system

[J]. Chemistry of Materials, 2020, 32(9): 4065-4071.

JIA H, PENG L, ZHANG Z, et al.

Na3.8[Sn0.67Si0.33]0.8Sb0.2S4: A quinary sodium fast ionic conductor for all-solid-state sodium battery

[J]. Journal of Energy Chemistry, 2020, 48: 102-106.

[本文引用: 1]

NAM Y J, CHO S J, OH D Y, et al.

Bendable and thin sulfide solid electrolyte film: A new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries

[J]. Nano Letters, 2015, 15(5): 3317-3323.

[本文引用: 1]

PARK K H, OH D Y, CHOI Y E, et al.

Solution-processable glass LiI-Li4SnS4 superionic conductors for all-solid-state Li-ion batteries

[J]. Advanced Materials, 2016, 28(9): 1874-1883.

[本文引用: 1]

HAYASHI A, MASUZAWA N, YUBUCHI S, et al.

A sodium-ion sulfide solid electrolyte with unprecedented conductivity at room temperature

[J]. Nature Communications, 2019, 10: doi: 10.1038/s41467-019-13178-2.

[本文引用: 1]

FUCHS T, CULVER S P, TILL P, et al.

Defect-mediated conductivity enhancements in Na3-xPn1-xWxS4(Pn=P, Sb) using aliovalent substitutions

[J]. ACS Energy Letters, 2020, 5(1): 146-151.

[本文引用: 1]

TANIBATA N, DEGUCHI M, HAYASHI A, et al.

All-solid-state Na/S batteries with a Na3PS4 electrolyte operating at room temperature

[J]. Chemistry of Materials, 2017, 29(12): 5232-5238.

[本文引用: 1]

WU E A, KOMPELLA C S, ZHU Z, et al.

New insights into the interphase between the Na metal anode and sulfide solid-state electrolytes: A joint experimental and computational study

[J]. ACS Applied Materials & Interfaces, 2018, 10(12): 10076-10086.

[本文引用: 1]

CHU I H, KOMPELLA C S, NGUYEN H, et al.

Room-temperature all-solid-state rechargeable sodium-ion batteries with a Cl-doped Na3PS4 superionic conductor

[J]. Scientific Reports, 2016, 6(1): doi: 10.1038/srep33733.

[本文引用: 2]

WAN H, CAI L, WENG W, et al.

Cobalt-doped pyrite for Na11Sn2SbS11.5Se0.5 electrolyte based all-solid-state sodium battery with enhanced capacity

[J]. Journal of Power Sources, 2020, 449: doi: 10.1016/j.jpowsour.2019.227515.

[本文引用: 1]

HEO J W, BANERJEE A, PARK K H, et al.

New Na-ion solid electrolytes Na4-xSn1-xSbxS4(0.02≤x≤0.33) for all-solid-state Na-ion batteries

[J]. Advanced Energy Materials, 2018, 8(11): doi: 10.1002/aenm.201702716.

[本文引用: 1]

HU P, ZHANG Y, CHI X, et al.

Stabilizing the interface between sodium metal anode and sulfide-based solid-state electrolyte with an electron-blocking interlayer

[J]. ACS Applied Materials & Interfaces, 2019, 11(10): 9672-9678.

[本文引用: 2]

ZHANG S, ZHAO Y, ZHAO F, et al.

Gradiently sodiated alucone as an interfacial stabilizing strategy for solid-state Na metal batteries

[J]. Advanced Functional Materials, 2020doi: 10.1002/afma.202001118.

[本文引用: 1]

TIAN Y, SUN Y, HANNAH D C, et al.

Reactivity-guided interface design in Na metal solid-state batteries

[J]. Joule, 2019, 3(4): 1037-1050.

[本文引用: 3]

WAN H, MWIZERWA J P, QI X, et al.

Core-shell Fe1-xS@Na2.9PS3.95Se0.05 nanorods for room temperature all-solid-state sodium batteries with high energy density

[J]. ACS Nano, 2018, 12(3): 2809-2817.

[本文引用: 2]

YUE J, ZHU X, HAN F, et al.

Long cycle life all-solid-state sodium ion battery

[J]. ACS Applied Materials & Interfaces, 2018, 10(46): 39645-39650.

[本文引用: 3]

KIM T W, PARK K H, CHOI Y E, et al.

Aqueous-solution synthesis of Na3SbS4 solid electrolytes for all-solid-state Na-ion batteries

[J]. Journal of Materials Chemistry A, 2018, 6(3): 840-844.

FAN X L, YUE J, HAN F D, et al.

High-performance all-solid-state Na-S battery enabled by casting-annealing technology

[J]. ACS Nano, 2018, 12(4): 3360-3368.

[本文引用: 3]

NAGATA Y, NAGAO K, DEGUCHI M, et al.

Amorphization of sodium cobalt oxide active materials for high-capacity all-solid-state sodium batteries

[J]. Chemistry of Materials, 2018, 30(20): 6998-7004.

[本文引用: 1]

NASU A, OTOYAMA M, SAKUDA A, et al.

Amorphous Na2TiS3 as an active material for all-solid-state sodium batteries

[J]. Chemistry Letters, 2019, 48(3): 288-290.

[本文引用: 2]

HAO F, CHI X W, LIANG Y L, et al.

Taming active material-solid electrolyte interfaces with organic cathode for all-solid-state batteries

[J]. Joule, 2019, 3(5): 1349-1359.

[本文引用: 4]

CHI X W, LIANG Y L, HAO F, et al.

Tailored organic electrode material compatible with sulfide electrolyte for stable all-solid-state sodium batteries

[J]. Angewandte Chemie-International Edition, 2018, 57(10): 2630-2634.

[本文引用: 3]

WAN H, MWIZERWA J P, HAN F, et al.

Grain-boundary-resistance-less Na3SbS4-xSex solid electrolytes for all-solid-state sodium batteries

[J]. Nano Energy, 2019, 66: doi:10.1016/j.nanoen.2019.104109.

[本文引用: 1]

WAN H, MWIZERWA J P, QI X, et al.

Nanoscaled Na3PS4 solid electrolyte for all-solid-state FeS2/Na batteries with ultrahigh initial coulombic efficiency of 95% and excellent cyclic performances

[J]. ACS Applied Materials & Interfaces, 2018, 10(15): 12300-12304.

[本文引用: 1]

RAO R P, CHEN H, WONG L L, et al.

Na3+xMxP1-xS4(M=Ge4+, Ti4+, Sn4+) enables high rate all-solid-state Na-ion batteries Na2+2δFe2-δ(SO4)3|Na3+xMxP1-xS4|Na2Ti3O7

[J]. Journal of Materials Chemistry A, 2017, 5(7): 3377-3388.

[本文引用: 1]

WANG Y G, WANG Q F, LIU Z P, et al.

Structural manipulation approaches towards enhanced sodium ionic conductivity in Na-rich antiperovskites

[J]. Journal of Power Sources, 2015, 293: 735-740.

[本文引用: 1]

NGUYEN H, HY S, WU E, et al.

Experimental and computational evaluation of a sodium-rich anti-perovskite for solid state electrolytes

[J]. Journal of the Electrochemical Society, 2016, 163(10): A2165-A2171.

[本文引用: 1]

SUN Y L, WANG Y C, LIANG X M, et al.

Rotational cluster anion enabling superionic conductivity in sodium-rich antiperovskite Na3OBH4

[J]. Journal of the American Chemical Society, 2019, 141(14): 5640-5644.

[本文引用: 1]

BRAGA M H, MURCHISON A J, FERREIRA J A, et al.

Glass-amorphous alkali-ion solid electrolytes and their performance in symmetrical cells

[J]. Energy & Environmental Science, 2016, 9(3): 948-954.

[本文引用: 1]

BRAGA M H, FERREIRA J A, MURCHISON A J, et al.

Electric dipoles and ionic conductivity in a Na+ glass electrolyte

[J]. Journal of the Electrochemical Society, 2016, 164(2): A207-A213.

BRAGA M H, GRUNDISH N S, MURCHISON A J, et al.

Alternative strategy for a safe rechargeable battery

[J]. Energy & Environmental Science, 2017, 10(1): 331-336.

[本文引用: 3]

OGUCHI H, MATSUO M, KUROMOTO S, et al.

Sodium-ion conduction in complex hydrides NaAlH4 and Na3AlH6

[J]. Journal of Applied Physics, 2012, 111(3): doi: 10.1063/1.3681362.

[本文引用: 1]

YOSHIDA K, SATO T, UNEMOTO A, et al.

Fast sodium ionic conduction in Na2B10H10-Na2B12H12 pseudo-binary complex hydride and application to a bulk-type all-solid-state battery

[J]. Applied Physics Letters, 2017, 110(10): doi: 10.1063/1.4977885.

[本文引用: 4]

LU Z H, CIUCCI F.

Structural origin of the superionic na conduction in Na2B10H10 closo-borates and enhanced conductivity by Na deficiency for high performance solid electrolytes

[J]. Journal of Materials Chemistry A, 2016, 4(45): 17740-17748.

[本文引用: 1]

KWEON K E, VARLEY J B, SHEA P, et al.

Structural, chemical, and dynamical frustration: Origins of superionic conductivity in closoborate solid electrolytes

[J]. Chemistry of Materials, 2017, 29(21): 9142-9153.

[本文引用: 1]

TANG W S, UNEMOTO A, ZHOU W, et al.

Unparalleled lithium and sodium superionic conduction in solid electrolytes with large monovalent cage-like anions

[J]. Energy & Environmental Science, 2015, 8(12): 3637-3645.

[本文引用: 1]

TANG W S, MATSUO M, WU H, et al.

Stabilizing lithium and sodium fast-ion conduction in solid polyhedral-borate salts at device-relevant temperatures

[J]. Energy Storage Materials, 2016, 4: 79-83.

TANG W S, MATSUO M, WU H, et al.

Liquid-like ionic conduction in solid lithium and sodium monocarba-closo-decaborates near or at room temperature

[J]. Advanced Energy Materials, 2016, 6(8): doi: 10.1002/aenm.201502237.

TANG W S, YOSHIDA K, SOLONININ A V, et al.

Stabilizing superionic-conducting structures via mixed-anion solid solutions of monocarba-closo-borate salts

[J]. ACS Energy Letters, 2016, 1(4): 659-664.

DIMITRIEVSKA M, SHEA P, KWEON K E, et al.

Carbon incorporation and anion dynamics as synergistic drivers for ultrafast diffusion in superionic LiCB11H12 and NaCB11H12

[J]. Advanced Energy Materials, 2018, 8(15): doi: 10.1002/aenm.201703422.

CUAN J, ZHOU Y, ZHOU T, et al.

Borohydride-scaffolded Li/Na/Mg fast ionic conductors for promising solid-state electrolytes

[J]. Advanced Materials, 2019, 31(1): doi: 10.1002/adma.201803533.

[本文引用: 1]

DUCHENE L, KUHNEL R S, STILP E, et al.

A stable 3 V all-solid-state sodium-ion battery based on a closo-borate electrolyte

[J]. Energy & Environmental Science, 2017, 10(12): 2609-2615.

[本文引用: 5]

ASAKURA R, DUCHENE L, KUHNEL R S, et al.

Electrochemical oxidative stability of hydroborate-based solid state electrolytes

[J]. ACS Applied Energy Materials, 2019, 2(9): 6924-6930.

[本文引用: 2]

PAYANDEH S, ASAKURA R, AVRAMIDOU P, et al.

Nido-borate/closo-borate mixed-anion electrolytes for all-solid-state batteries

[J]. Chemistry of Materials, 2020, 32(3): 1101-1110.

[本文引用: 2]

DUCHENE L, KUHNEL R S, RENTSCH D, et al.

A highly stable sodium solid-state electrolyte based on a dodeca/deca-borate equimolar mixture

[J]. Chemical Communications, 2017, 53(30): 4195-4198.

[本文引用: 1]

DUCHENE L, LUNGHAMMER S, BURANKOVA T, et al.

Ionic conduction mechanism in the Na2(B12H12)0.5(B10H10)0.5 closo-borate solid-state electrolyte: Interplay of disorder and ion-ion interactions

[J]. Chemistry of Materials, 2019, 31(9): 3449-3460.

[本文引用: 1]

BRIGHI M, MURGIA F, LODZIANA Z, et al.

A mixed anion hydroborate/carba-hydroborate as a room temperature Na-ion solid electrolyte

[J]. Journal of Power Sources, 2018, 404: 7-12.

[本文引用: 1]

HE L Q, LIN H J, LI H F, et al.

Na3NH2B12H12 as high performance solid electrolyte for all-solid-state Na-ion batteries

[J]. Journal of Power Sources, 2018, 396: 574-579.

[本文引用: 3]

/