储能科学与技术 ›› 2021, Vol. 10 ›› Issue (4): 1219-1236.doi: 10.19799/j.cnki.2095-4239.2021.0042

• 特约评述 • 上一篇    下一篇

电极材料储锂行为及其机制的原位透射电镜研究进展

柯承志1(), 肖本胜1, 李苗1, 陆敬予3, 何洋4, 张力2, 张桥保1()   

  1. 1.厦门大学材料学院
    2.厦门大学化学化工学院,福建 厦门 361005
    3.哈尔滨工业大学(深圳)理学院,广东 深圳 518055
    4.北京科技大学,北京市材料基因工程高精尖创新中心,北京 100083
  • 收稿日期:2021-01-28 修回日期:2021-02-23 出版日期:2021-07-05 发布日期:2021-06-25
  • 通讯作者: 张桥保 E-mail:kechengzhiah@163.com;zhangqiaobao@xmu.edu.cn
  • 作者简介:柯承志(1995—),男,硕士研究生,主要研究方向为新能源材料,E-mail:kechengzhiah@163.com
  • 基金资助:
    国家自然科学基金项目(52072323);福建省科技厅引导性项目(2018H0034)

Research progress in understanding of lithium storage behavior and reaction mechanism of electrode materials through in situ transmission electron microscopy

Chengzhi KE1(), Bensheng XIAO1, Miao LI1, Jingyu LU3, Yang HE4, Li ZHANG2, Qiaobao ZHANG1()   

  1. 1.Department of Materials Science and Engineering, College of Materials, Xiamen University
    2.College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
    3.School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
    4.Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2021-01-28 Revised:2021-02-23 Online:2021-07-05 Published:2021-06-25
  • Contact: Qiaobao ZHANG E-mail:kechengzhiah@163.com;zhangqiaobao@xmu.edu.cn

摘要:

锂离子在体相电极材料中的输运、反应、储存所引发的电子和晶体结构、微观形貌、化学组成、物理性质的动态演变与锂离子电池的电化学性能息息相关。从纳米甚至原子尺度上阐明电极在电化学过程中的微观结构、形貌、物相和化学成分的动态演化行为,对理解电极材料基本物理化学特性及其动态演化与电池宏观电化学性能间的构效关系至关重要;这需要借助清晰、精确的先进原位表征手段。在现有各类原位表征技术中,原位透射电镜(TEM)由于其超高的空间和时间分辨率,具有实时、动态监测电极材料在工况下结构、形貌、物相以及表/界面处原子级结构和成分变化的独特优势,是开展上述研究最具代表性的一种重要表征手段;可对电极材料微观动态演变行为和反应机理等进行精确表述,进而为高性能电极材料的构筑与性能调控提供微观依据和创新思路。本文总结归纳了当前采用原位TEM表征技术解析锂离子电池关键电极材料在充放电过程中的微观动态演变规律与失效机制的重要研究进展,包括多种正极材料和高比容量负极材料的原位TEM研究,重点是它们在电化学过程中微观结构、化学成分与物相动态演变等信息。此外,本文对原位TEM表征技术当前存在的问题,以及借助原位TEM技术研究二次电池的未来发展方向进行了展望和思考。

关键词: 电极材料, 储锂行为, 储锂机制, 原位透射电镜, 锂离子电池

Abstract:

Transport, reaction, and storage of Li ions in bulk electrode materials leads to the dynamic evolution of their electronic and crystal structures, microstructures, chemical compositions, and physical properties, which are the important determinants in the electrochemical performance of Li ion batteries. It is extremely important to understand the fundamental physical and chemical properties of electrode materials at a nanometer or even atomic scale to determine their microstructure, morphology, phase, and chemical composition during an electrochemical process. The structure-activity relationship between the electrode materials and macroscopic electrochemical performance of a battery must be considered. These require clear, precise, and advanced in situ characterizations. Among existing in situ characterization techniques, in situ transmission electron microscopy (TEM) is one of the most representative and important methods to conduct these experiments. Its unique advantages include ultra-high spatial and temporal resolution and real-time, dynamic monitoring of the structure, morphology, phase and interface evolution of the electrode materials under the given working conditions. It can precisely evaluate the microscopic dynamic evolution behavior and the reaction mechanism of electrode materials, providing a microscopic basis and innovative ideas for the construction and performance regulation of high-performance electrode materials. In this study, we summarize important progress on in situ TEM investigations of the dynamic evolution and failure mechanism of key electrode materials in Li ion batteries during charge/discharge. These investigations include various cathode materials and high specific capacity anode materials, especially their dynamic evolutions in microstructure, chemical composition, and phases during an electrochemical process. Moreover, the current limitations of in situ TEM and future directions of in situ TEM investigation of secondary batteries are discussed.

Key words: electrode materials, lithium ion storage behavior, lithium ion storage mechanisms, in situ transmission electron microscopy, lithium ion batteries

中图分类号: