储能科学与技术 ›› 2020, Vol. 9 ›› Issue (2): 346-352.doi: 10.19799/j.cnki.2095-4239.2020.0021

• 庆祝陈立泉院士八十寿辰专刊 • 上一篇    下一篇

P2-O3复合相富锂锰基正极材料的合成及性能研究

张建宇1, 鲁理平1, 于志辉1, 宋进2, 夏定国2()   

  1. 1. 北京工业大学,北京 100124
    2. 北京大学,北京 100871
  • 收稿日期:2020-01-08 修回日期:2020-02-07 出版日期:2020-03-05 发布日期:2020-03-15
  • 通讯作者: 夏定国 E-mail:dgxia@pku.edu.cn
  • 作者简介:张建宇(1994—),男,硕士研究生,研究方向为锂离子电池正极材料制备,E-mail:961755832@qq.com ;
  • 基金资助:
    北京市自然科学基金重点项目(2181001)

Synthesis and performance of P2-O3 composite-phase Li-rich Mn-based cathode materials

ZHANG Jianyu1, LU Liping1, YU Zhihui1, SONG Jin2, XIA Dingguo2()   

  1. 1. Beijing University of Technology, Beijing 100124, China
    2. Peking University, Beijing 100871, China
  • Received:2020-01-08 Revised:2020-02-07 Online:2020-03-05 Published:2020-03-15
  • Contact: Dingguo XIA E-mail:dgxia@pku.edu.cn

摘要:

为了解决高比能富锂材料电压衰退、首圈库仑效率低、倍率性能差等问题,本文通过简单的固相烧结法合成P2-O3复合相富锂正极材料。该材料利用P2相在首次充放电过程中转化为O2相,避免过渡金属迁移,有效地降低了循环过程中的电压衰退,极大地提高了首圈库仑效率和倍率性能。电化学性能测试表明,在2.0~4.6 V以0.1 C(1 C=200 mA/g)电流进行充放电,P2-O3复合相富锂正极材料可以提供高于290 mA·h/g的比容量,首圈库仑效率高达97%。1 C放电比容量约为240 mA·h/g,100圈容量保持率接近80%;100圈平均电压衰退小于170 mV。该复合相富锂正极材料合成制备简单;在2.0~4.6V电压范围内,实现传统富锂材料在2.0~4.8 V下的高容量,这大大促进了富锂材料与商用电解液的匹配;此外,循环性能相对良好,电压衰退也得到了一定的抑制,有力地推动了富锂材料在电动汽车市场上的应用。

关键词: 复合相, 富锂锰基正极材料, 电压衰退, 首圈库仑效率

Abstract:

To solve the common issues of voltage decay, low initial coulombic efficiency, and poor rate performance that occur in high-energy lithium-rich cathode materials, a P2-O3 composite-phase cathode material was synthesized by the simple solid-state method. During the first charging and discharging process, this material experienced P2-O2 phase transition, and the O2 phase prevented transition metal migration; thus, voltage decay was effectively mitigated. This P2-O3 composite-phase cathode material delivered a specific capacity of over 290 mA·h/g with an initial coulombic efficiency of 97% under a current density of 0.1C (1C = 200 mA/g) at 2.0—4.6 V. When charged at 200 mA/g, this material released a capacity of about 240 mA·h/g. After 100 cycles, the capacity retention was approximately 80% and the voltage loss was less than 170 mV. This material is easy to synthesize. At 2.0—4.6 V, it delivered a capacity as high as that of traditional lithium-rich materials tested at 2.0—4.8 V, which greatly promotes the adaptation of lithium-rich materials with commercial electrolytes. Furthermore, the cycle performance is relatively optimum and the voltage decay is suppressed to some extent, which strongly promotes the practical application of lithium-rich materials in the electric vehicles market.

Key words: composite phase, Li-rich Mn-based cathode material, voltage decay, initial coulombic efficiency

中图分类号: