储能科学与技术 ›› 2016, Vol. 5 ›› Issue (5): 702-712.doi: 10.12028/j.issn.2095-4239.2016.0056

• 特约评述 • 上一篇    下一篇

固态锂空气电池研究进展

张  涛,张晓平,温兆银   

  1. 中国科学院能量转换材料重点实验室,中国科学院上海硅酸盐研究所,上海 200050
  • 收稿日期:2016-08-01 出版日期:2016-09-01 发布日期:2016-09-01
  • 通讯作者: 温兆银,研究员,主要研究方向为钠(硫)电池及全固态锂离子电池、锂空气/锂硫等新型二次电池,E-mail:zywen@mail.sic.ac.cn。
  • 作者简介:张涛(1979—),研究员,主要研究方向为锂空气电池、新型高比能电池等,E-mail:taozhang@mail.sic.ac.cn;
  • 基金资助:
    中国科学院百人计划,国家自然科学基金项目(51432010)及上海市科委项目(14JC1493000)。

Progress in rechargeable solid-state Li-air batteries

ZHANG Tao, ZHANG Xiaoping, WEN Zhaoyin   

  1. CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • Received:2016-08-01 Online:2016-09-01 Published:2016-09-01

摘要: 锂空气电池的理论能量密度高达3505 W•h/kg,能够实现的能量密度预计可达到600 W•h/kg,是实现续航里程达到500~800 km的电动汽车的重要动力电源体系。锂空气电池面临稳定性、效率、实用性和安全性等挑战,特别是需要具备在空气环境下工作的能力。发展固态锂空气电池能够从根本上解决实用性问题,有效解决安全性问题,同时也是提高锂空气电池稳定性的重要途径。本文对固态锂空气电池在电池结构、电极/电解液界面调控、电池成型方法以及电池性能与机理等方面的研究进展进行总结,在每一部分都围绕其对于解决锂空气电池目前所面临的SEAS主要问题的贡献和仍然存在的问题进行评述,并试图提出下一阶段的研究思路,明确固态锂空气电池的发展前景。

关键词: 固态锂空气电池, 固体电解质, 复合空气正极, 锂金属基负极, 界面调控

Abstract:  The theoretical specific energy of lithium-air battery is as high as 3505 W•h/kg. The practical specific energy of this electrochemical energy storage system is estimated to be able to 600 W•h/kg, which is a promising value to sustain a driving range of 500~800 kilometers for electric vehicles. Currently lithium-air batteries are facing various challenges, such as stability associated with decomposition of carbon-based cathodes and electrolytes, low electric energy efficiency and power density, questionable applicability due to the common operation environment just in pure oxygen, and the safety issues related to lithium dendrites and so on, in particular, the ability whether can be operated in ambient air or not. Developing solid-state lithium-air batteries can solve the problem of applicability fundamentally, circumvent the safety issues completely, and which is also an important avenue to improve the stability of the battery system. In this paper, we reviewe the progress on the cell construction, the regulation of the electron/electrolyte interface, the cell assembly, the electrochemical performance and the mechanism for the solid-state lithium-air batteries. In every section, the contributions of the recent research progress on the SEAS challenges and the still remained questions will be commented. Based on these review, we attempt to propose some alternative approaches for the next stage, and suggest a development prospective for the solid-state lithium-air batteries.

Key words: solid-state Li-air batteries, solid-state Li-ion conducting electrolyte, complex air cathode, Li metal-based anode, interface regulation